C++矩阵库 Eigen 简介
最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了。 Eigen 是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件就能使用,非常方便。此外,Eigen的接口清晰,稳定高效。唯一的问题是之前一直用 Matlab,对 Eigen 的 API 接口不太熟悉,如果能有 Eigen 和 Matlab 对应的说明想必是极好的,终于功夫不负有心人,让我找到了,原文在这里,不过排版有些混乱,我将其重新整理了一下,方便日后查询。
Eigen 矩阵定义
#include <Eigen/Dense> Matrix<double, , > A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, , Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, , , RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) //
Eigen 基础使用
// Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i, j) // C(i+1,j+1) // A.resize(, ); // Runtime error if assertions are on.
B.resize(, ); // Runtime error if assertions are on.
A.resize(, ); // Ok; size didn't change.
B.resize(, ); // Ok; only dynamic cols changed. A << , , , // Initialize A. The elements can also be
, , , // matrices, which are stacked along cols
, , ; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(); // Fill A with all 10's.
Eigen 特殊矩阵生成
// Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = ones(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
Eigen 矩阵分块
// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(i+1:i+rows, :)
P.middleRows(i, rows) // P(i+1:i+rows, :)
P.bottomRows<rows>() // P(end-rows+1:end, :)
P.bottomRows(rows) // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
Eigen 矩阵元素交换
// Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
Eigen 矩阵转置
// Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate() // conj(R)
Eigen 矩阵乘积
// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;
Eigen 矩阵单个元素操作
// Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q); // (R < s ? P : Q)
Eigen 矩阵化简
// Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2)
Eigen 矩阵点乘
// Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
Eigen 矩阵类型转换
//// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done
Eigen 求解线性方程组 Ax = b
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV()
Eigen 矩阵特征值
// Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>
参考文献:
【1】http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
【2】http://blog.csdn.net/augusdi/article/details/12907341
C++矩阵库 Eigen 简介的更多相关文章
- c++矩阵运算库Eigen简介
		
C++矩阵运算库Eigen介绍 C++中的矩阵运算库常用的有Armadillo,Eigen,OpenCV,ViennaCL,PETSc等.我自己在网上搜了一下不同运算库的特点,最后选择了Eigen.主 ...
 - C++ 矩阵库 eigen
		
找了好久才发现了一个这么方便的C++矩阵库. 官网 http://eigen.tuxfamily.org/index.php?title=Main_Page 参考文章 http://blog.csdn ...
 - C++矩阵库 Eigen 快速入门
		
最近需要用 C++ 做一些数值计算,之前一直采用Matlab 混合编程的方式处理矩阵运算,非常麻烦,直到发现了 Eigen 库,简直相见恨晚,好用哭了. Eigen 是一个基于C++模板的线性代数库, ...
 - Eigen 矩阵库学习笔记
		
最近为了在C++中使用矩阵运算,简单学习了一下Eigen矩阵库.Eigen比Armadillo相对底层一点,但是只需要添加头文库即可使用,不使用额外的编译和安装过程. 基本定义 Matrix3f是3* ...
 - Raphael Js矢量库API简介:
		
Raphael Js矢量库API简介:Raphael Javascript 是一个 Javascript的矢量库. 2010年6月15日,著名的JavaScript库ExtJS与触摸屏代码库项目jQT ...
 - Numpy 矩阵库(Matrix)
		
Numpy 中包含了一个矩阵库 numpy.matlib, 该模块中的函数返回的是一个矩阵, 而不是 ndarray 对象. 一个 m * n de 矩阵是一个 有 m 行(row) n 列(colu ...
 - c++ 日志输出库 spdlog 简介(1)
		
参考文章: log库spdlog简介及使用 - 网络资源是无限的 - CSDN博客 http://blog.csdn.net/fengbingchun/article/details/78347105 ...
 - NumPy 矩阵库(Matrix)
		
NumPy 矩阵库(Matrix) NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象. 一个 的矩阵是一个由行(row)列(col ...
 - python之numpy矩阵库的使用(续)
		
本文是对我原先写的python常用序列list.tuples及矩阵库numpy的使用中的numpy矩阵库的使用的补充.结合我个人现在对线性代数的复习进度来不断更博. Section 1:行列式的计算 ...
 
随机推荐
- html-使用表单标签实现注册页面
			
案例说明: - 使用表格实现页面效果 - 超链接不想要有效果,使用href="#" - 如果表格里面的单元格没有内容,使用空格作为占位符 - 使用图片标签提交表单 <in ...
 - js处理包含中文的字符串
			
场景: js中String类型自带的属性length获取的是字符串的字符数目,但是前端经常会需要限制字符串的显示长度,一个中文字符又大概占两个英文小写字符的显示位置,所以中英文混合的情况下用lengt ...
 - Laravel 支付宝支付异步通知
			
支付宝支付通知有前端通知(GET)和服务器异步通知(POST) 在配置支付宝支付时,需要注意的问题就是支付宝的回调操作: 1.在laravel中应该将支付宝通知路径组织csrf验证,否则会导致419错 ...
 - css3动画运用
			
https://daneden.github.io/animate.css/ https://minimamente.com/example/magic_animations/ http://i ...
 - js面向对象设计之class中一些坑和技巧
			
this的指向 super 类工厂,类中定义方法名时,可以使用字符串,这就可以创建工厂函数(类似模板类) Generator 函数 静态属性和私有属性.私有方法 new.target
 - spring测试框架的使用
			
junit的使用 1.加入 junit jar包 <dependency> <groupId>junit</groupId> <artifactId>j ...
 - Hive命令 参数
			
1.hive -h 显示帮助 2.hive -h hiveserverhost -p port 连接远程hive服务器 3.hive --define a=1 --hivevar b= ...
 - pycharm 调试Django 奇葩问题:Process finished with exit code -1073741819
			
想自己整个BLOG,发现python+Django好像还不错,尝试一下.在使用过程中,突然pycharm不能调试django工程.网上搜索也没解决,是google哦.好像记得启动pycharm时,看到 ...
 - centos7 安装mariadb最新版并配置
			
打开http://mirrors.aliyun.com/,查找mariadb,然后拼装地址http://mirrors.aliyun.com/mariadb/yum打开,点开你想要的版本,选择你的操作 ...
 - [控件] LiveChangedImageView
			
LiveChangedImageView 效果 说明 切换图片的时候自动根据图片的尺寸进行渐变式切换,效果很不错,使用非常容易. 源码 https://github.com/YouXianMing/U ...