741. Cherry Pickup
In a N x N
grid
representing a field of cherries, each cell is one of three possible integers.
- 0 means the cell is empty, so you can pass through;
- 1 means the cell contains a cherry, that you can pick up and pass through;
- -1 means the cell contains a thorn that blocks your way.
Your task is to collect maximum number of cherries possible by following the rules below:
- Starting at the position (0, 0) and reaching (N-1, N-1) by moving right or down through valid path cells (cells with value 0 or 1);
- After reaching (N-1, N-1), returning to (0, 0) by moving left or up through valid path cells;
- When passing through a path cell containing a cherry, you pick it up and the cell becomes an empty cell (0);
- If there is no valid path between (0, 0) and (N-1, N-1), then no cherries can be collected.
Example 1:
Input: grid =
[[0, 1, -1],
[1, 0, -1],
[1, 1, 1]]
Output: 5
Explanation:
The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.
Note:
grid
is anN
byN
2D array, with1 <= N <= 50
.- Each
grid[i][j]
is an integer in the set{-1, 0, 1}
.- It is guaranteed that grid[0][0] and grid[N-1][N-1] are not -1.
Approach#1: DFS + Memory. [C++]
class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int n = grid.size();
grid_ = &grid;
memo = vector<vector<vector<int>>>(n+1, vector<vector<int>>(n+1, vector<int>(n+1, INT_MIN)));
return max(0, dp(n-1, n-1, n-1));
} private:
vector<vector<vector<int>>> memo;
vector<vector<int>> *grid_;
int dp(int x1, int y1, int x2) {
int y2 = x1 + y1 - x2;
if (x1 < 0 || y1 < 0 || x2 < 0 || y2 < 0) return -1;
if ((*grid_)[x1][y1] < 0 || (*grid_)[x2][y2] < 0) return -1;
if (x1 == 0 && y1 == 0) return (*grid_)[x1][y1];
if (memo[x1][y1][x2] != INT_MIN) return memo[x1][y1][x2];
int tmp = max(max(dp(x1-1, y1, x2-1), dp(x1, y1-1, x2)),
max(dp(x1, y1-1, x2-1), dp(x1-1, y1, x2)));
if (tmp < 0) return memo[x1][y1][x2] = -1;
tmp += (*grid_)[x1][y1];
if (x1 != x2) tmp += (*grid_)[x2][y2];
return memo[x1][y1][x2] = tmp;
}
};
Analysis:
Key observation: (0, 0) to (n-1, n-1) to (0, 0) is the same as (n-1, n-1) to (0, 0) twice
Two people starting from (n-1, n-1) and go to (0, 0).
They move one step (left or up) at a time simultaneously. And pick up the cherry within the grid (if there is one).
if they ended up at the same grid with a cherry. Only one of them can pick up it.
x1, y1, x2 to represent a state y2 can be computed: y2 = x1 + y1 - x2.
dp(x1, y1, x2) computes the max cherries if start from {(x1, y1), (x2, y2)} to (0, 0), which is a recursive function.
Since two people move independently, there are 4 subproblems: (left, left), (left, up), (up, left), (left, up). Finally, we have:
dp(x1, y1, x2) = g[y1][x1] + g[y2][x2] + max(dp(x1-1, y1, x2-1), dp(x1, y1-1, x2-1), dp(x1-1, y1, x2), dp(x1, y1-1, x2))
Time complexity: O(n^3)
Space complexity: O(n^3)
Reference:
http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-741-cherry-pickup/
741. Cherry Pickup的更多相关文章
- [LeetCode] 741. Cherry Pickup 捡樱桃
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- LeetCode 741. Cherry Pickup
原题链接在这里:https://leetcode.com/problems/cherry-pickup/ 题目: In a N x N grid representing a field of che ...
- [LeetCode] Cherry Pickup 捡樱桃
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- [Swift]LeetCode741. 摘樱桃 | Cherry Pickup
In a N x N grid representing a field of cherries, each cell is one of three possible integers. 0 mea ...
- LeetCode741. Cherry Pickup
https://leetcode.com/problems/cherry-pickup/description/ In a N x N grid representing a field of che ...
- 动态规划-Cherry Pickup
2020-02-03 17:46:04 问题描述: 问题求解: 非常好的题目,和two thumb其实非常类似,但是还是有个一点区别,就是本题要求最后要到达(n - 1, n - 1),只有到达了(n ...
- 动态规划Dynamic Programming
动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...
- 矩形最小路径和 · Minimum Path Sum
[抄题]: 给定一个只含非负整数的m*n网格,找到一条从左上角到右下角的可以使数字和最小的路径. [思维问题]: [一句话思路]: 和数字三角形基本相同 [输入量]:空: 正常情况:特大:特小:程序里 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- Spring框架之演示JDBC的模板类
1. 步骤一:创建数据库的表结构 create database spring_day03; use spring_day03; create table t_account( id int prim ...
- @Id 和 @column 注解 使用注意
当@Id写字啊 field 上时 ,如过 把 @column 写在 getter 方法上 ,会出现错误 或者不起作用 Unknown column 'gecompanys0_.sourcec' in ...
- servlet 中 service ,doGet , doPost 关系
web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app version="2 ...
- 配置tomcat server.xml 文件 ,虚拟路径
<Context path="/web" docBase="D:\workspace\web\src\main\webapp" reloadable=& ...
- Devexpress VCL Build v2014 vol 14.2.5 发布
和xe8 几乎同一天出来,但是目前官方不支持xe8. The following sections list all minor and major changes in DevExpress VCL ...
- 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)
传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...
- 2018.09.30 bzoj2288:生日礼物(贪心+线段树)
传送门 线段树经典题目. 每次先找到最大子段和来更新答案,然后利用网络流反悔退流的思想把这个最大字段乘-1之后放回去. 代码: #include<bits/stdc++.h> #defin ...
- 2018.09.08 AtCoder Beginner Contest 109简要题解
比赛传送门 水题大赛? 全是水题啊!!! T1 ABC333 就是判断是不是两个数都是奇数就行了. 代码: #include<bits/stdc++.h> using namespace ...
- c++ => new/delete
new的具体使用方式如下: 类型 *变量名 = new 类型; delete 变量 / delete[] 变量; 类型包括数组.结构体和类 数组申请动态内存后,要使用delete[]才能把内存清除干净 ...
- flex 分页
<?xml version="1.0" encoding="utf-8"?><s:Group xmlns:fx="http://ns ...