bzoj 3232: 圈地游戏


01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\)

\(\sum A-mid\sum B \geq 0\)

然后把所有的B中的权值乘一个mid再跑一个什么算法就星了

这就是道裸题(雾)

二分一个\(mid\),就是一个网络流问题了

选一个点的集合,如果两个方格相邻,一个选了一个没选,总和就要减去中间这条边的权值

然后用最小鸽,如果选就没有损失,不选有格子上价值的损失;两个相邻点一个选了一个不选有中间那条边边权*mid的损失,裸的最小鸽

还有边界上的边怎么办,就边界外面新建一圈点,强制那些点不选。就做完了。

#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
const double inf=1e9;
int n,m,val[51][51],wh[51][51],ww[51][51];
int dep[3000],fir[3000],head[3000],dis[1000010],nxt[1000010],id;
double w[1000010];
il vd link(int a,int b,double c,double d=0){
nxt[++id]=head[a],head[a]=id,dis[id]=b,w[id]=c;
nxt[++id]=head[b],head[b]=id,dis[id]=a,w[id]=d;
}
int num[52][52],NUM_ID,S,T;
il bool BFS(){
static int que[3000],hd,tl;
hd=tl=0;
que[tl++]=S;for(int i=1;i<=NUM_ID;++i)dep[i]=0;dep[S]=1;
while(hd^tl){
int x=que[hd];
for(int i=head[x];i;i=nxt[i])
if(w[i]>1e-7&&!dep[dis[i]])dep[dis[i]]=dep[x]+1,que[tl++]=dis[i];
++hd;
}
return dep[T];
}
il double Dinic(int x,double maxflow){
if(x==T)return maxflow;
double ret=0;
for(int&i=fir[x];i;i=nxt[i])
if(w[i]>1e-7&&dep[dis[i]]==dep[x]+1){
double d=Dinic(dis[i],std::min(maxflow,w[i]));
w[i]-=d,w[i^1]+=d;ret+=d,maxflow-=d;
if(maxflow<1e-7)return ret;
}
return ret;
}
il double check(double mid){
memset(head,0,sizeof head);id=1;
for(int i=1;i<=m;++i)link(S,num[0][i],inf),link(S,num[n+1][i],inf);
for(int i=1;i<=n;++i)link(S,num[i][0],inf),link(S,num[i][m+1],inf);
double ret=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
link(num[i][j],T,val[i][j]),ret+=val[i][j];
for(int i=1;i<=n+1;++i)
for(int j=1;j<=m;++j)
link(num[i-1][j],num[i][j],mid*wh[i][j],mid*wh[i][j]);
for(int i=1;i<=n;++i)
for(int j=1;j<=m+1;++j)
link(num[i][j-1],num[i][j],mid*ww[i][j],mid*ww[i][j]);
while(BFS())memcpy(fir,head,sizeof fir),ret-=Dinic(S,inf);
return ret;
}
int main(){
n=gi(),m=gi();
for(int i=1;i<=n;++i)for(int j=1;j<=m;++j)val[i][j]=gi();
for(int i=1;i<=n+1;++i)for(int j=1;j<=m;++j)wh[i][j]=gi();
for(int i=1;i<=n;++i)for(int j=1;j<=m+1;++j)ww[i][j]=gi();
for(int i=0;i<=n+1;++i)
for(int j=0;j<=m+1;++j)
num[i][j]=++NUM_ID;
S=++NUM_ID,T=++NUM_ID;
double l=0,r=5000,mid;
while(r-l>1e-6){
mid=(l+r)/2;
if(check(mid)>1e-7)l=mid;
else r=mid;
}
printf("%.3lf\n",l);
return 0;
}


bzoj 3232: 圈地游戏的更多相关文章

  1. BZOJ 3232: 圈地游戏 分数规划+判负环

    3232: 圈地游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 966  Solved: 466[Submit][Status][Discuss] ...

  2. bzoj 3232: 圈地游戏 01分数规划

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...

  3. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  4. bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...

  5. bzoj 3232: 圈地游戏【分数规划+最小割】

    数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量 ...

  6. BZOJ3232: 圈地游戏

    题解: 神题一道... 题解戳这里:http://hi.baidu.com/strongoier/item/0425f0e5814e010265db0095 分数规划可以看这里:http://blog ...

  7. 【BZOJ3232】圈地游戏(分数规划,网络流)

    [BZOJ3232]圈地游戏(分数规划,网络流) 题面 BZOJ 题解 很神仙的一道题. 首先看到最大化的比值很容易想到分数规划.现在考虑分数规划之后怎么计算贡献. 首先每条边的贡献就变成了\(mid ...

  8. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  9. 【BZOJ3232】圈地游戏 分数规划+最小割

    [BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...

随机推荐

  1. 转:HTTP Status 404(The requested resource is not available)的几种解决方法

    原文地址 原因:servlet没有配置正确 ,查看web.xml确认正确,以及自己的请求路径正确 在IE中提示“404”错误有以下三种情况 1.未部署Web应用 2.URL输入错误 排错方法: 首先, ...

  2. [翻译] UCZProgressView

    UCZProgressView UCZProgressView is a circular progress indicator with cool animations for image load ...

  3. 3.5星|《硅谷产品》:Facebook网红社区产品经理经验谈

    硅谷产品:36讲直通世界级产品经理 作者是Facebook产品经理,目前负责的具体业务书的扉页上有含糊的介绍,书中没明确说,根据书中内容推测,主要是网红社区. 比较遗憾的是书中作者亲历的案例只有3个. ...

  4. VRSProcess(二)

    1._beginthreadex再谈 Windows操作系统提供了这样的一种解决方案——每个线程都将拥有自己专用的一块内存区域来供标准C运行库中所有有需要的函数使用.而且这块内存区域的创建就是由C/C ...

  5. 4-6 R语言函数 排序

    #sort:对向量进行排序;返回排好序的内容 #order:返回排好序的内容的下标/多个排序标准 > x <- data.frame(v1=1:5,v2=c(10,7,9,6,8),v3= ...

  6. performSelector 多参调用的实现方案

    1.nsinvocation封装: 2.msg_send封装: 第二种方案是系统的原生封装.

  7. Kubernetes中的资源调度与资源管理

    一.scheduling:把pod放到node上 1.最小调度单元:pod 2.1.8的版本后,最大支持5000个node 3.scheduling由两个部分组成: 3.1 Predicates:过滤 ...

  8. 20145203盖泽双实验一 Java开发环境的熟悉(Linux + Eclipse)

    实验一 Java开发环境的熟悉(Linux + Eclipse) 实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 实验要求 1.没 ...

  9. VC++中出现stack overflow错误时修改VC++的默认堆栈大小

    VC++中,在栈空间上申请存储的结构体或者类对象的数组空间时,如果数组长度过大,造成申请的栈空间超过或者逼近1MB时,程序可以编译通过,但是不能够执行起来.打到调试模式时会弹出如下图所示的栈空间越界错 ...

  10. VC++程序运行时间测试函数

    0:介绍 我们在衡量一个函数运行时间,或者判断一个算法的时间效率,或者在程序中我们需要一个定时器,定时执行一个特定的操作,比如在多媒体中,比如在游戏中等,都会用到时间函数.还比如我们通过记录函数或者算 ...