链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2435

题意:

给定正整数N和M,统计2和N!之间有多少个整数x满足:x的所有素因子都大于M(2≤N≤1e7,1≤M≤N,N-M≤1e5)。
输出答案除以100000007的余数。例如,N=100,M=10时答案为43274465。

分析:

因为M≤N,所以N!是M!的整数倍。“所有素因子都大于M”等价于和M!互素。
另外,根据最大公约数的性质,对于k>M!,k与M!互素当且仅当k mod M!与M!互素。
这样,只需要求出“不超过M!且与M!互素的正整数个数”,再乘以N!/M!即可。
这样,问题的关键就是求出phi(M!)。因为有多组数据,考虑用递推的方法求出所有的phifac(n)=phi(n!)。
由phi函数的公式:phi(n) = n(1-1/p1)(1-1/p2)...(1-1/pk),
如果n不是素数,那么n!和(n-1)!的素因子集合完全相同,因此phifac(n)=phifac(n-1)*n;
如果n是素数,那么还会多一项(1-1/n),即(n-1)/n,约分得phifac(n)=phifac(n-1)*(n-1)。

代码:

 import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final long MOD = (long)1e8 + 7;
final int UP = (int)1e7 + 5;
boolean isp[] = new boolean[UP];
long phifac[] = new long[UP]; void constant() {
fill(isp, true);
int u = (int)sqrt(UP+0.5);
for(int i = 2; i <= u; i++) if(isp[i]) {
for(int j = i*i; j < UP; j += i) isp[j] = false;
}
phifac[1] = phifac[2] = 1;
for(int i = 3; i < UP; i++)
phifac[i] = phifac[i-1] * (isp[i] ? i-1 : i) % MOD;
} void MAIN() {
constant();
while(true) {
int n = cin.nextInt();
int m = cin.nextInt();
if(n + m == 0) break;
long ans = phifac[m];
for(int i = m+1; i <= n; i++) ans = ans * i % MOD;
System.out.println((ans-1+MOD)%MOD); // 注意这里要减1,因为题目从2开始统计
}
} public static void main(String args[]) { new Main().MAIN(); }
}

UVa 11440 - Help Tomisu(欧拉函数 + 问题转换)的更多相关文章

  1. Help Tomisu UVA - 11440 难推导+欧拉函数,给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2<=N<=1e7, 1<=M<=N, N-M<=1E5) 输出答案除以1e8+7的余数。

    /** 题目:Help Tomisu UVA - 11440 链接:https://vjudge.net/problem/UVA-11440 题意:给定正整数N和M, 统计2和N!之间有多少个整数x满 ...

  2. uva 11440 - Help Tomisu(欧拉功能)

    题目链接:uva 11440 - Help Tomisu 题目大意:给定n和m,求从2~n.中的数x.要求x的质因子均大于m.问说x有多少个.答案模上1e9+7. 解题思路: (1)n!=k∗m!(n ...

  3. UVA 11426 GCD-Extreme(II) ★ (欧拉函数)

    题意 求Σ{1<=i<N} Σ{i<j<=N} GCD(i, j)     (N<=4000000) 分析 原始思路 暴力求明显是不行的,我们把式子简化形式一下发现它可以 ...

  4. UVa 11440 (欧拉函数) Help Tomisu

    题意: 给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数. 分析: 首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素 对于k大于M!,k与M!互素等价于 ...

  5. UVa 11440 Help Tomisu (数论欧拉函数)

    题意:给一个 n,m,统计 2 和 n!之间有多少个整数x,使得x的所有素因子都大于M. 析:首先我们能知道的是 所有素数因子都大于 m 造价于 和m!互质,然后能得到 gcd(k mod m!, m ...

  6. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  7. UVa 10214 - Trees in a Wood.(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVa 10820 - Send a Table(欧拉函数)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA 12493 Stars (欧拉函数--求1~n与n互质的个数)

    pid=26358">https://uva.onlinejudge.org/index.phpoption=com_onlinejudge&Itemid=8&cate ...

随机推荐

  1. iOS交互h5— JavaScriptCore ---UIWebview

    JavaScriptCore这个框架,从而让web页面和本地原生应用交互起来非常方便,而且使用此框架可以做到Android那边和iOS相对统一, web前端 在三端交互中,web前端开发人员来定义,让 ...

  2. 【代码笔记】iOS-iOS图片的原生(Graphics)

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  3. thinkphp3.2 success方法和redirect方法

    $this->redirect('showlist',array(),3,'添加成功'); $this->success('添加成功',U('showlist'),3);

  4. js与native的交互

    WebView与Javascript交互(Android): WebView与Javascript交互是双向的数据传递,1.H5网页的JS函数调用Native函数 2.Native函数调用JS函数,具 ...

  5. Visualizing CNN Layer in Keras

    CNN 权重可视化 How convolutional neural networks see the world An exploration of convnet filters with Ker ...

  6. 网络 私有IP和子网掩码设置

    私有IP不需要花钱 节约使用公网IP有两个方法,一个方法是动态IP(关机回收IP),一个方法是私有IP,尤其是私有IP作用巨大. 私有IP不具有唯一性,不能直接访问公网.比如,我以私有IP192.16 ...

  7. Pig join用法举例

    jnd = join a by f1, b by f2;   join操作默认的是内连接,只有两边都匹配才会保留   需要用null补位的那边需要知道它的模式: 如果是左外连接,需要知道右边的数据集的 ...

  8. Linux 安装MySQL-python

    vi ~/.bash_profile PATH="/usr/local/mysql/bin:${PATH}" export PATH export DYLD_LIBRARY_PAT ...

  9. java 中解析json步骤

    一.   JSON (JavaScript Object Notation)一种简单的数据格式,比xml更轻巧. Json建构于两种结构:     1.“名称/值”对的集合(A collection ...

  10. zTree自定义节点name显示样式

    //setting中配置属性 view: { showLine:false, dblClickExpand: true, showIcon: false, addDiyDom: addDiyDom / ...