[2018HN省队集训D1T3] Or
[2018HN省队集训D1T3] Or
题意
给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值:
- 所有值在 \([1,2^k)\) 中
- 前缀或的值严格递增
\(n,k\le 3\times 10^4\)
题解
这题有点意思
首先肯定每一项都得有新出现的二进制位, 于是可以想到一个超简单的 \(O(nk^2)\) 的DP, 设 \(dp_{i,j}\) 为长度为 \(i\) 且已经出现了 \(j\) 个二进制位的数列的个数. 然后考虑枚举数列第 \(i\) 项的新二进制位个数, 那么转移显然:
\]
统计答案的时候枚举总共出现的二进制位个数:
\]
状态数是 \(O(nk)\) 的, 朴素转移 \(O(k)\), 总复杂度 \(O(nk^2)\).
机智的我们一眼看出后面的转移式子就是个二项卷积, 随手比个阶乘打个NTT上去就变成 \(O(nk\log k)\) 了.
然而这还不够.
我们发现一次转移相当于一次卷积和一次点积, 我们肯定想这玩意能不能快速幂一发.
然后我们非常sad地发现由于里面那个 \(2^{j-k}\) 搞事情所以不能裸快速幂.
考虑这个 \(2^{j-k}\) 是拿来干啥的. \(k\) 是第 \(i\) 项的新二进制位个数, \(j\) 是前 \(i\) 项已经出现过的二进制位个数, \(j-k\) 是前 \(i-1\) 项已经出现的二进制位个数. 显然这些前 \(i-1\) 项中出现过的二进制位在第 \(i\) 项中是任选的, 于是我们需要乘上这玩意.
那么如果转移不是 \(1\) 位而是 \(m\) 位呢?
这次应该是这样的转移式:
\]
我们相当于在一个长度为 \(i-m\) 的序列后面接了长度为 \(m\) 的序列并用组合数让他们的二进制位互不干扰. 但是后面接的长度为 \(m\) 的数列里面是完全不包含前面 \(i-m\) 中的二进制位的方案的. 这些位由于在前面已经出现过, 所以在后面长度为 \(m\) 的数列里是任选的. 一共有 \(m(j-k)\) 位.
下标相同的并在一起就又是个二项卷积了, 倍增就好了. 复杂度 \(O(k \log k \log n)\).
参考代码
#include <bits/stdc++.h>
const int G=3;
const int DFT=1;
const int IDFT=-1;
const int MAXN=1e5+10;
const int MOD=998244353;
const int PHI=MOD-1;
int n;
int k;
int dp[MAXN];
int pw[MAXN];
int tr[MAXN];
int tx[MAXN];
int rev[MAXN];
int fact[MAXN];
int C(int,int);
int Pow(int,int,int);
void NTT(int*,int,int);
int main(){
scanf("%d%d",&n,&k);
pw[0]=1;
fact[0]=1;
for(int i=1;i<=k;i++){
pw[i]=(pw[i-1]<<1)%MOD;
fact[i]=1ll*fact[i-1]*i%MOD;
tr[i]=Pow(fact[i],MOD-2,MOD);
}
int bln=1,bct=0;
while(bln<=k*2){
bln<<=1;
++bct;
}
for(int i=0;i<bln;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bct-1));
NTT(tr,bln,DFT);
dp[0]=1;
int cur=1;
while(n>0){
if(n&1){
for(int i=k+1;i<bln;i++)
dp[i]=0;
for(int i=0;i<=k;i++)
dp[i]=1ll*dp[i]*Pow(pw[i],cur,MOD)%MOD;
NTT(dp,bln,DFT);
for(int i=0;i<bln;i++)
dp[i]=1ll*dp[i]*tr[i]%MOD;
NTT(dp,bln,IDFT);
}
NTT(tr,bln,IDFT);
for(int i=k+1;i<bln;i++)
tx[i]=0;
for(int i=0;i<=k;i++)
tx[i]=1ll*tr[i]*Pow(pw[i],cur,MOD)%MOD;
NTT(tx,bln,DFT);
NTT(tr,bln,DFT);
for(int i=0;i<bln;i++)
tr[i]=1ll*tr[i]*tx[i]%MOD;
NTT(tr,bln,IDFT);
for(int i=k+1;i<bln;i++)
tr[i]=0;
NTT(tr,bln,DFT);
n>>=1;
cur<<=1;
}
int ans=0;
for(int i=0;i<=k;i++)
(ans+=1ll*dp[i]*fact[i]%MOD*C(k,i)%MOD)%=MOD;
printf("%d\n",ans);
return 0;
}
int C(int n,int m){
return n<0||m<0||n<m?0:1ll*fact[n]*Pow(fact[m],MOD-2,MOD)%MOD*Pow(fact[n-m],MOD-2,MOD)%MOD;
}
void NTT(int* a,int len,int opt){
for(int i=0;i<len;i++)
if(rev[i]>i)
std::swap(a[i],a[rev[i]]);
for(int i=1;i<len;i<<=1){
int step=i<<1;
int wn=Pow(G,(opt*PHI/step+PHI)%PHI,MOD);
for(int j=0;j<len;j+=step){
int w=1;
for(int k=0;k<i;k++,w=1ll*w*wn%MOD){
int x=a[j+k];
int y=1ll*a[j+k+i]*w%MOD;
a[j+k]=(x+y)%MOD;
a[j+k+i]=(x-y+MOD)%MOD;
}
}
}
if(opt==IDFT){
int inv=Pow(len,MOD-2,MOD);
for(int i=0;i<len;i++)
a[i]=1ll*a[i]*inv%MOD;
}
}
inline int Pow(int a,int n,int p){
int ans=1;
while(n>0){
if(n&1)
ans=1ll*a*ans%p;
a=1ll*a*a%p;
n>>=1;
}
return ans;
}
[2018HN省队集训D1T3] Or的更多相关文章
- [2018HN省队集训D9T1] circle
[2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...
- [2018HN省队集训D8T1] 杀毒软件
[2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...
- [2018HN省队集训D8T3] 水果拼盘
[2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...
- [2018HN省队集训D6T2] girls
[2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...
- [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform
[Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...
- [2018HN省队集训D5T2] party
[2018HN省队集训D5T2] party 题意 给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值. 有 \(q\) 个查询, 每次给定一个大小为 ...
- [2018HN省队集训D5T1] 沼泽地marshland
[2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...
- [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard
[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...
- [2018HN省队集训D1T1] Tree
[2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...
随机推荐
- SpringBoot 初接触之 404
1. 确认输入项目路径是否正确,如:http://localhost:8080/index,这里需要注意的是端口号的查看 2. 确认注解是否用对 在 Controller 层类上面使用的注解是 @Re ...
- C#编程,TreeView控件的学习
新建一个WinForm项目之后,在窗体中放入一个treeView控件(treeView1),根据数据库数据填充建立树节点.数据库的结构如下: ID Title P_ID a ...
- spring下redis使用资料
参考资料地址: spring集成redis Spring缓存注解@Cacheable.@CacheEvict.@CachePut使用 redis常用命令 redis持久化(RDB与AOF) Redis ...
- WPF Datagrid横向排列
<DataGrid.ItemsPanel> <ItemsPanelTemplate> <StackPanel Orientation="Horizontal&q ...
- 基于.NET Core2的图片上传
其实,.NET Core2的图片上传挺好做的,只是,有些坑要注意.......话不多说,上代码 public async Task<IActionResult> Upload([FromS ...
- 【解决】 无法打开包括文件:“windows.h”: No such file or directory
vs编译时错误: 无法打开包括文件:“windows.h”: No such file or directory 出现这种错误什么都不用配置(环境变量),最好办法是将VS安装在C盘,让开发工具自动包含 ...
- 【转】关于JTA,XA,ACID
对于我们这种初学者,可能会使用spring带给我们的@Transactional,可能了解JTA,可能会使用jotm.atomikos,又会遇到一些名词XA,支持XA的数据库驱动等等诸多问题,然后就会 ...
- JVM之---Java源码编译机制
Sun JDK中采用javac将Java源码编译为class文件,这个过程包含三个步骤: 1.分析和输入到符号表(Parse and Enter) Parse过程所做的工作有词法和语法分 ...
- Android开发之旅1:环境搭建及HelloWorld
——工欲善其事必先利其器 引言 本系列适合0基础的人员,因为我就是从0开始的,此系列记录我步入Android开发的一些经验分享,望与君共勉!作为Android队伍中的一个新人的我,如果有什么不对的地方 ...
- xamarin.android App在后台运行不退出
/// <summary> /// 重写按键事件 /// </summary> /// <param name="keyCode"></p ...