Power Network

Time Limit: 2000MS Memory Limit: 32768K

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.



An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20

7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7

(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5

(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15

6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

Southeastern Europe 2003

一眼题,就是多源多汇的模板题,我们只需要选出来一个超级源点和一个超级汇点分别与其它的源点和汇点连边就行了。建完图之后直接跑最大流。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define N 300
#define M 100005
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+ch-'0',ch=getchar();
    return ans;
}
int n,m,ns,nt,s,t,first[N],d[N],cnt;
struct edge{int v,c,next;}e[M];
inline void add(int u,int v,int c){
    e[++cnt].v=v;
    e[cnt].c=c;
    e[cnt].next=first[u];
    first[u]=cnt;
    e[++cnt].v=u;
    e[cnt].c=0;
    e[cnt].next=first[v];
    first[v]=cnt;
}
inline bool bfs(){
    queue<int>q;
    memset(d,-1,sizeof(d));
    d[s]=0,q.push(s);
    while(!q.empty()){
        int x=q.front();
        q.pop();
        for(int i=first[x];i!=-1;i=e[i].next){
            int v=e[i].v;
            if(d[v]!=-1||e[i].c<=0)continue;
            d[v]=d[x]+1;
            if(v==t)return true;
            q.push(v);
        }
    }
    return false;
}
inline int dfs(int x,int f){
    if(x==t||!f)return f;
    int flow=f;
    for(int i=first[x];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(e[i].c>0&&d[v]==d[x]+1&&flow){
            int tmp=dfs(v,min(flow,e[i].c));
            if(!tmp)d[v]=-1;
            e[i].c-=tmp;
            e[i^1].c+=tmp;
            flow-=tmp;
        }
    }
    return f-flow;
}
int main(){
    while(scanf("%d%d%d%d",&n,&ns,&nt,&m)!=EOF){
        s=0,t=n+1,cnt=-1;
        memset(first,-1,sizeof(first));
        for(int i=1;i<=m;++i){
            int u=read()+1,v=read()+1,c=read();
            add(u,v,c);
        }
        for(int i=1;i<=ns;++i){
            int v=read()+1,c=read();
            add(s,v,c);
        }
        for(int i=1;i<=nt;++i){
            int u=read()+1,c=read();
            add(u,t,c);
        }
        int ans=0;
        while(bfs())ans+=dfs(s,0x3f3f3f3f);
        printf("%d\n",ans);
    }
    return 0;
}

2018.07.06 POJ 1459 Power Network(多源多汇最大流)的更多相关文章

  1. poj1459 Power Network (多源多汇最大流)

    Description A power network consists of nodes (power stations, consumers and dispatchers) connected ...

  2. [poj1459]Power Network(多源多汇最大流)

    题目大意:一个网络,一共$n$个节点,$m$条边,$np$个发电站,$nc$个用户,$n-np-nc$个调度器,每条边有一个容量,每个发电站有一个最大负载,每一个用户也有一个最大接受量.问最多能供给多 ...

  3. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  4. poj 1459 Power Network

    题目连接 http://poj.org/problem?id=1459 Power Network Description A power network consists of nodes (pow ...

  5. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

  6. poj 1459 Power Network【建立超级源点,超级汇点】

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25514   Accepted: 13287 D ...

  7. POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 D ...

  8. 网络流--最大流--POJ 1459 Power Network

    #include<cstdio> #include<cstring> #include<algorithm> #include<queue> #incl ...

  9. poj 1459 Power Network(增广路)

    题目:http://poj.org/problem?id=1459 题意:有一些发电站,消耗用户和中间线路,求最大流.. 加一个源点,再加一个汇点.. 其实,过程还是不大理解.. #include & ...

随机推荐

  1. js实现点击按钮弹出上传文件的窗口

    转自:https://www.jb51.net/article/100916.htm 1.详细描述 在页面上设置一个“选择文件”按钮,点击该按钮,会弹出本地磁盘信息用于选择文件. 2.代码 ? 1 2 ...

  2. HTML网页Table解析

    procedure TForm27.Button1Click(Sender: TObject); var doc2: IHTMLDocument2; doc3: IHTMLDocument3; ita ...

  3. mysql插入json数据

    data_dict = {"a":1, "b":2}  data_json = json.dumps(data_dict) data_escape = MySQ ...

  4. mongodb基础学习13-聚集aggregate操作

    aggregate可以用的操作与sql的对应关系 下面来看具体操作例子: 分组求和: 求总记录数 商品价格大于50记录分组求和 商品价格大于50且分组记录大于2的分组记录条件 分组库存数,并按库存排序 ...

  5. Haskell语言学习笔记(42)Bifunctor

    Bifunctor class Bifunctor p where bimap :: (a -> b) -> (c -> d) -> p a c -> p b d bim ...

  6. commonCookie.js

    /** * Created with JetBrains WebStorm. * NAME: commonCookie.js */(function(window,document){ var com ...

  7. textbox显示定位到最后一行(最新一行)

    this.textBox1.Select(this.txtMsgInfo.TextLength, 0); this.textBox1.ScrollToCaret();

  8. spark 创建稀疏向量和矩阵

    http://blog.csdn.net/canglingye/article/details/41316193 [相互转换]:http://stackoverflow.com/questions/3 ...

  9. PCA原理(转)

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  10. preset

    preset - 必应词典 美[.pri'set]英[.priː'set] v.预置:事先安排:预调:给…预定时间 网络预设:预先装置:预置位