题目概要:

在无向图中寻找出所有的满足下面条件的点:割掉这个点之后,能够使得一开始给定的两个点a和b不连通,割掉的点不能是a或者b。(ZJOI2004)

数据范围约定
结点个数N≤100
边数M≤N*(N-1)/2

朴素算法:

枚举每个点,删除它,然后判断a和b是否连通,时间复杂度O(NM)
如果数据范围扩大,该算法就失败了!

AC算法:

题目要求的点一定是图中的割点,但是图中的割点不一定题目要求的点。如上图中的蓝色点,它虽然是图中的割点,但是割掉它之后却不能使a和b不连通
由于a点肯定不是我们所求的点,所以可以以a为根开始DFS遍历整张图。
对于生成的DFS树,如果点v是割点,如果以他为根的子树中存在点b,那么该点是问题所求的点。

时间复杂度是O(M)的

code:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
int read() {
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N][N],deep[N],dfn[N],size[N],low[N],fa[N],timer,u,v,ans;
void tarjan(int k) {
dfn[k]=low[k]=++timer;
size[k]=;
for (int i=;i<=n;i++)
if (a[k][i]) {
if (!dfn[i]) {
tarjan(i);
fa[i]=k;
size[k]+=size[i];
low[k]=min(low[k],low[i]);
if (dfn[i]<=dfn[v]&&dfn[i]+size[i]->=dfn[v]&&low[i]>=dfn[k]&&k!=u&&k!=v) ans=min(ans,k);
}
else low[k]=min(low[k],dfn[i]);
}
}
int main() {
n=read();
u=read(),v=read();
while (u!=) {
a[u][v]=a[v][u]=;
u=read(),v=read();
}
u=read(),v=read();
ans=n+;
tarjan(u);
if (ans>n) puts("No solution");
else printf("%d\n",ans);
return ;
}

[ZJOI2004]嗅探器的更多相关文章

  1. Luogu5058 [ZJOI2004]嗅探器

    $Luogu5058 [ZJOI2004]嗅探器 给定一张 \(n\) 个点, \(m\) 条边的无向图,和两点 \(s,\ t\) ,求 \(s\to t\) 编号最小的必经点(排除 \(s,\ t ...

  2. ⌈洛谷5058⌋⌈ZJOI2004⌋嗅探器【Tarjan】

    题目连接 [洛谷传送门] [LOJ传送门] 题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心 ...

  3. 洛谷P5058 [ZJOI2004]嗅探器

    题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心互相交换的所有信息,但是蓝军的网络相当的庞大 ...

  4. P5058 [ZJOI2004]嗅探器 tarjan割点

    这个题是tarjan裸题.最后bfs暴力找联通块就行.(一开始完全写错了竟然得了70分,题意都理解反了...这数据强度...) 题干: 题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络 ...

  5. luogu P5058 [ZJOI2004]嗅探器

    题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心互相交换的所有信息,但是蓝军的网络相当的庞大 ...

  6. Luogu5058 ZJOI2004嗅探器(割点)

    数据范围过小怎么做都行.考虑优秀一点的做法.考虑dfs树上两台中心服务器间的路径,路径上所有能割掉中心服务器所在子树的点均可以成为答案.直接从两点中的任意一点开始dfs就更方便了.一开始弱智的以为只要 ...

  7. [ZJOI2004]嗅探器 (割点)

    这题就比较好玩吧水题 以数据范围来看随便怎么做就能过 \(O(n)\)显然我们得过一个割点,其次这个割点得在\(x-y\)中间且不为始终点 其他都好说,在中间:从\(x\)开始遍历,首先得保证\(x- ...

  8. Tarjan总结(缩点+割点(边)+双联通+LCA+相关模板)

    Tarjan求强连通分量 先来一波定义 强连通:有向图中A点可以到达B点,B点可以到达A点,则称为强连通 强连通分量:有向图的一个子图中,任意两个点可以相互到达,则称当前子图为图的强连通分量 强连通图 ...

  9. tarjan 算法应用

    主要讲证明,流程倒是也有 然后发现自己并不会严谨证明 其实后面一些部分流程还是挺详细 本来这篇blog叫做"图论部分算法证明",然后发现OI中的图论想完全用数学上的方法证明完全超出 ...

随机推荐

  1. 记一次 SSM 分页

    1.实体层(entity,pojo,domain) package com.entity; import java.io.Serializable; private int totalCount; / ...

  2. 开发工具IntelliJ IDEA的安装与操作

    开发工具IntelliJ IDEA的安装与操作 1.1 开发工具概述 IDEA是一个专门针对Java的集成开发工具(IDE),它可以极大地提升我们的开发效率.可以自动编译,检查错误.在公司中,使用的就 ...

  3. SpringSecurity简单记录

    在pom.xml中将springsecurity导入后,对于springsecurity会出现三个依赖包:spring-security-web,spring-security-config,spri ...

  4. Spring 发送内嵌图片的邮件 遇到的问题

    问题1:spring 发送带图片的html格式的邮件? 解决方法1:直接在发送内容里面添加 <img src="http://www.rgagnon.com/images/jht.gi ...

  5. docker学习端口连接docker容器---第四章节

    一.Docker容器连接 前面的第二章节,我们事先通过网络端口来访问运行在docker容器内的服务,我们也可以通过端口连接到一个docker容器 我们可以指定容器绑定的网络地址,如绑定127.0.0. ...

  6. Hyperledger Fabric 建立一个简单网络

    Building you first network 网络结构: 2个Orgnizations(每个Org包含2个peer节点)+1个solo ordering service 打开fabric-sa ...

  7. No mapping found for HTTP request with URI [/crmcrmcrm/css/bootstrap.min.css] in DispatcherServlet with name 'springMvc'

    先把错误贴上来 No mapping found for HTTP request with URI [/crmcrmcrm/css/sb-admin-2.css] in DispatcherServ ...

  8. Docker多主机互联最佳实践

    在公司使用docker多主机互联时碰到了各种坑.搞清楚后才发现如此简单,以下是根据实际经验的总结. 版本信息 Client: Version: 18.09.0 API version: 1.39 Go ...

  9. mssqlserver超级班助类 带详细用法

    using System; using System.Collections; using System.Collections.Generic; using System.Configuration ...

  10. 第七届蓝桥杯大赛个人赛决赛(软件类C语言B组)第一题:一步之遥

      这题好多人用爆搜/bfs来做,然而这题可用exgcd(扩展欧几里得)做,而且很简便. 先附原题: 一步之遥 从昏迷中醒来,小明发现自己被关在X星球的废矿车里. 矿车停在平直的废弃的轨道上. 他的面 ...