Codechef July Challenge 2018 : Picking Fruit for Chefs
好久没写题解了,就过来水两篇。
对于每一个人,考虑一个序列$A$,$A_I$表示当k取值为 i 时的答案。
如果说有两个人,我们可以把$(A+B)^k$二项式展开,这样就发现把两个人合并起来的操作就是一次卷积,直接NTT就可以了。
同类人有多个,直接暴力肯定是不行的。快速幂的话不知道会不会T,我是用了多项式取ln和exp(拉板子)。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 400002
using namespace std;
int read_p,read_ca;
inline int read(){
read_p=;read_ca=getchar();
while(read_ca<''||read_ca>'') read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p;
}
const int MOD=,g=;
inline int mi(int x,int y){
int mmh=;
while (y){
if (y&) mmh=1LL*mmh*x%MOD;
y>>=;x=1LL*x*x%MOD;
}
return mmh;
}
int tot,k,n,m,f[MN],mmh,I[MN],_I[MN],L[MN],R[MN],MMH,N[MN],A[MN],B[MN],e[MN],_e[MN],W[MN],C_a[MN],C_b[MN],N_c[MN],C[MN],D[MN],Q[MN],_A[MN],_B[MN],ANS[MN];
inline void M(int &x){while(x>=MOD)x-=MOD;while(x<)x+=MOD;}
inline int ask(int n,int k){
for (int i=;i<=k+;i++) N[i]=mi(i,k);
for (int i=;i<=k+;i++) M(N[i]+=N[i-]);
n%=MOD;
for (int i=;i<=k+;i++) L[i]=R[i]=n-i;
for (int i=;i<=k+;i++) L[i]=1ll*L[i-]*L[i]%MOD;
for (int i=k;i>=;i--) R[i]=1ll*R[i+]*R[i]%MOD;
mmh=;
for (int i=;i<=k+;i++){
MMH=N[i];
if (i>) MMH=1LL*MMH*_I[i]%MOD*L[i-]%MOD;
if (i<k+) MMH=1LL*MMH*_I[k+-i]%MOD*((k+-i)%?-:)*R[i+]%MOD;
M(mmh+=MMH);
}
return mmh;
}
inline void inv(){
int base=mi(g,(MOD-)/tot),_base=mi(base,MOD-);
e[]=_e[]=;
for (int i=;i<=tot;i++) e[i]=1LL*e[i-]*base%MOD,_e[i]=1LL*_e[i-]*_base%MOD;
}
inline void NTT(int N,int a[],int w[]){
for (int j,i=j=;i<N;i++){
if (i>j) swap(a[i],a[j]);
for (int k=N>>;(j^=k)<k;k>>=);
}
for (int i=;i<=N;i<<=){
for (int k,j=k=,s=tot/i;k<(i>>);j+=s,k++) W[k]=w[j];
for (int m=i>>,j=;j<N;j+=i)
for (int k=;k<m;k++){
int A=j+k,B=A+m,z=1LL*a[B]*W[k]%MOD;
M(a[B]=a[A]-z);
M(a[A]+=z);
}
}
}
inline void cc(int n,int m,int a[],int b[],int c[]){
int N=,i;while (N<(n+m)) N<<=;
for (i=;i<n;i++) C_a[i]=a[i];fill(C_a+n,C_a+N,);
for (i=;i<m;i++) C_b[i]=b[i];fill(C_b+m,C_b+N,);
NTT(N,C_a,e);NTT(N,C_b,e);
for (i=;i<N;i++) c[i]=1LL*C_a[i]*C_b[i]%MOD;
NTT(N,c,_e);
int w=mi(N,MOD-);
for (i=;i<N;i++) c[i]=1LL*c[i]*w%MOD;
}
inline void _D(int n,int a[],int b[]){for (int i=;i<n;i++) b[i]=1LL*(i+)*a[i+]%MOD;b[n]=;}
inline void _S(int n,int a[],int b[]){for (int i=n;i;i--) b[i]=1LL*a[i-]*I[i]%MOD;b[]=;}
void ny(int n,int a[],int b[]){
if (n==) memset(b,,sizeof(int)*tot),b[]=mi(a[],MOD-);else{
ny((n+)>>,a,b);
register int i;
int N=;while (N<(n<<)) N<<=;
copy(a,a+n,N_c);fill(N_c+n,N_c+N,);
NTT(N,N_c,e);NTT(N,b,e);
for (i=;i<N;i++) b[i]=(2LL-1LL*N_c[i]*b[i]%MOD+MOD)*b[i]%MOD;
NTT(N,b,_e);
int w=mi(N,MOD-);
for (i=;i<n;i++) b[i]=1LL*b[i]*w%MOD;fill(b+n,b+N,);
}
}
void sqrt(int n,int a[],int b[]){
if (n==) memset(b,,sizeof(int)*tot),b[]=int(sqrt(a[])+0.5);else{
sqrt((n+)>>,a,b);
register int i;
int N=,w=I[];while (N<(n<<)) N<<=;
copy(b,b+n,D);fill(D+n,D+N,);
for (i=;i<n;i++) M(D[i]<<=);
ny(n,D,C);
cc(n,n,a,C,C);
for (i=;i<n;i++) b[i]=(1LL*w*b[i]+C[i])%MOD;
}
}
inline void Ln(int n,int a[],int b[]){
memset(C,,sizeof(int)*tot);memset(D,,sizeof(int)*tot);
_D(n,a,D);ny(n,a,C);
cc(n,n,D,C,b);
_S(n,b,b);
}
void exp(int n,int a[],int b[]){
if (n==) memset(b,,sizeof(int)*tot),b[]=;else{
exp((n+)>>,a,b);
Ln(n,b,Q);
int N=,w=(MOD+)>>;while (N<(n<<)) N<<=;
for (int i=;i<n;i++) M(Q[i]=a[i]-Q[i]);M(Q[]+=);
cc(n,n,Q,b,b);
fill(b+n,b+N,);
}
}
void work(int n,int C[]){
if (n==){
C[]=;
for (int i=;i<k;i++) C[i]=;
}
for (int i=;i<k;i++) A[i]=_I[i+];
ny(k,A,B);
for (int i=;i<k;i++) A[i]=1LL*mi(n+,i+)*_I[i+]%MOD;
cc(k,k,A,B,C);
}
int main(){
scanf("%d%d%d",&k,&m,&n);k++;
for(tot=;tot<(k<<);tot<<=);inv();
I[]=;for (int i=;i<MN;i++) I[i]=1LL*(MOD-MOD/i)*I[MOD%i]%MOD;
f[]=_I[]=;for (int i=;i<MN;i++) _I[i]=1LL*_I[i-]*I[i]%MOD,f[i]=1LL*f[i-]*i%MOD;
//scanf("%d%d%d",&k,&m,&n);
//n=3;k=10;
/*for (int i=0;i<=k;i++) S[i]=1LL*ask(n,i)*I[i]%MOD;
for (int i=0;i<=k;i++){
int o=0;
for (int j=0;j<=i;j++) o=(1LL*S[i]*I[j+1]+o)%MOD;
printf("%d ",o);
}
puts("");
for (int i=0;i<=k;i++)
printf("%d ",1LL*(mi(n+1,i+1)-1)*I[i+1]%MOD);
puts("");
*/
ANS[]=;
for (int i=;i<=n;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
work(a-,_A);work(b,_B);
//for (int i=0;i<k;i++) printf("%d ",1ll*_B[i]*f[i]%MOD);puts("");
int tmp=mi(b-a+,MOD-);
for (int i=;i<k;i++) M(_B[i]-=_A[i]),_B[i]=1LL*_B[i]*tmp%MOD;
Ln(k,_B,_A);
for (int i=;i<k;i++) _A[i]=1LL*_A[i]*c%MOD;
exp(k,_A,_B);
cc(k,k,ANS,_B,ANS);
//for (int i=0;i<k;i++) printf("%d ",1LL*ANS[i]*f[i]);puts("");
}
printf("%d\n",1LL*ANS[k-]*f[k-]%MOD);
}
Codechef July Challenge 2018 : Picking Fruit for Chefs的更多相关文章
- Codechef July Challenge 2018 : Subway Ride
传送门 首先(想了很久之后)注意到一个性质:同一条边有多种颜色的话保留3种就可以了,这是因为假如最优解要求当前位置与相邻两条边都不相同,那么只要有3条边,就肯定可以满足这一点. 完事就做一个nlogn ...
- Codechef October Challenge 2018 游记
Codechef October Challenge 2018 游记 CHSERVE - Chef and Serves 题目大意: 乒乓球比赛中,双方每累计得两分就会交换一次发球权. 不过,大厨和小 ...
- Codechef September Challenge 2018 游记
Codechef September Challenge 2018 游记 Magician versus Chef 题目大意: 有一排\(n(n\le10^5)\)个格子,一开始硬币在第\(x\)个格 ...
- codechef February Challenge 2018 简要题解
比赛链接:https://www.codechef.com/FEB18,题面和提交记录是公开的,这里就不再贴了 Chef And His Characters 模拟题 Chef And The Pat ...
- Codechef STMINCUT S-T Mincut (CodeChef May Challenge 2018) kruskal
原文链接http://www.cnblogs.com/zhouzhendong/p/9010945.html 题目传送门 - Codechef STMINCUT 题意 在一个有边权的无向图中,我们定义 ...
- Codechef August Challenge 2018 : Chef at the River
传送门 (要是没有tjm(Sakits)的帮忙,我还真不知道啥时候能做出来 结论是第一次带走尽可能少的动物,使未带走的动物不冲突,带走的这个数量就是最优解. 首先这个数量肯定是下界,更少的话连第一次都 ...
- Codechef August Challenge 2018 : Safe Partition
传送门 (虽然是A了但是不知道复杂度是不是正确的 考虑以某个位置为结尾的合法划分 先考虑min,带来的影响是限制了最小长度,预处理出这个最小长度后,这可以在处理到这个数时,把不能算的部分去掉(不满足m ...
- Codechef August Challenge 2018 : Interactive Matrix
传送门 首先整个矩阵可以被分为很多小矩阵,小矩阵内所有行的单调性是一样的,所有列的单调性是一样的. 考虑如何在这样一个小矩阵中找出答案.我的策略是每次取四个角中最大值和最小值的点,这样可以每次删掉一行 ...
- Codechef August Challenge 2018 : Lonely Cycles
传送门 几波树形dp就行了. #include<cstdio> #include<cstring> #include<algorithm> #define MN 5 ...
随机推荐
- Harbo1.5.2离线搭建
环境说明 操作系统版本:Centos7.5 docker版本:docker-ce 17.03.2 harbor版本:v1.5.2 docker-compose: 1.22.0 基础环境搭建 系统优化 ...
- LFYZ-OJ ID: 1019 位数问题
位数问题 问题描述 在所有的N位数中,有多少个数中有偶数个数字3?由于结果可能很大,你只需要输出这个答案对12345取余的值. INPUT 输入一个数N(1<=N<=1000),输入以0结 ...
- KL散度
摘自: https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 一.解决的问题 量化两种概率分布P和Q可以使 ...
- 第30月第3天 iOS图标icon自动生成和自定义尺寸
1. http://icon.wuruihong.com/ https://www.jianshu.com/p/684751c14735 2.status bar UIViewControllerBa ...
- codeblocks更改颜色主题
链接:http://www.cnblogs.com/wenbosheng/p/5899483.html
- springboot项目中如何在pom文件覆盖starter中默认指定的jar版本号
分两种情况: 1.项目继承自spring-boot-starter-parent 通过定义properties的方式改变starter中的默认版本 <!-- Inherit defaults ...
- C++设计模式——模板方法模式
模板方法模式 在GOF的<设计模式:可复用面向对象软件的基础>一书中对模板方法模式是这样说的:定义一个操作中的算法骨架,而将一些步骤延迟到子类中.TemplateMethod使得子类可以不 ...
- Mysql --数据库概述1
什么是数据(Data)? 描述事物的符号记录称为数据,描述事物的符号既可以是数字,也可以是文字.图片,图像.声音.语言等,数据由多种表现形式,它们都可以经过数字化后存入计算机 在计算机中描述一个事物, ...
- vue-地址插件 v-region
demo地址:https://terryz.gitee.io/vue/#/region/demo
- 记账本-NABCD分析
N(Need)需求 这个软件主要解决了大学生管理自己财务状况的问题,随着手机支付的日趋流行大家对财务的概念就变成了银行卡账户余额的一串数字,在不知不觉中,这串数字就一变小,也就出现了月光族.由此看来, ...