loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划
依次从左到右考虑每一位上填的数。
用$f_{L, a, R, b, S}$表示正在满足向右走的线索是$L$,前$a$个字符已经满足,正在满足向左走的线索是$R$,前$b$个字符还没有满足,还未被考虑的线索集合是$S$。
主要有两种转移:
- 填下一个字符
- 如果两个线索下一个要填的字符相同,那么直接填
- 如果不同则还需判断一下是否会使得另一线索不满足条件。
- 更换线索
- 向右走的线索是一堆类似于后缀的东西,向左走的线索是一堆类似于前缀的东西
- 能不能在某个串的某个位置处更换某个串可以预处理出来
loj上加了一堆常数优化卡到rk 1,估计很快就被超了。
记得Doggu指着Claris这道题的非记忆化搜索写法给我说以后见着Claris记着%。
Code
/**
* loj
* Problem#6037
* Accepted
* Time: 1224ms
* Memory: 25208k
*/
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <set>
using namespace std;
typedef bool boolean; const int N = ;
const int Lim = << ; #define last_one(__x) (__builtin_ffs(__x) - 1) int n;
int len[N];
int s[N][N];
int exi[N][N];
int can[N][N]; // L: forward, R: backward
int usable[N][N];
int f[N][N][N][N][]; inline void init() {
scanf("%d", &n);
set<int> ss;
for (int i = , x; i < n; i++) {
int l = , hash_val = ;
while (~scanf("%d", &x) && x) {
s[i][l++] = x;
hash_val = hash_val * + x;
}
len[i] = l, s[i][l] = ;
if (ss.count(hash_val))
n--, i--;
else
ss.insert(hash_val);
} for (int i = ; i < n; i++)
for (int j = ; j < len[i]; j++)
exi[i][j + ] = exi[i][j] | ( << s[i][j]);
} // start at pos
boolean check(int a, int pos, int b) {
int *pa = s[a] + pos, *pb = s[b];
while (*pa || *pb) {
if (*pa == *pb)
pa++, pb++;
else if (( << *pb) & exi[a][pa - s[a]])
pb++;
else
return false;
}
return true;
} void upd(int& a, int b) {
if (a > b)
a = b;
} // considering s[L][pl], s[R][pr - 1], S remained
int dp(int L, int pl, int R, int pr, int S) {
if (!S && pl == len[L] && !pr)
return ;
int &rt = f[L][pl][R][pr][S];
if (rt)
return rt;
rt = Lim; for (int T = S & can[L][pl], i = last_one(T); T; T -= (T & (-T)), i = last_one(T))
upd(rt, dp(i, , R, pr, S ^ ( << i)));
if (!pr) {
for (int i = ; i < n && (S >> i); i++)
if ((S >> i) & )
// for (int j = 0; j <= len[i]; j++)
// if ((can[i][j] >> R) & 1)
// upd(rt, dp(L, pl, i, j, S ^ (1 << i)));
for (int T = usable[R][i], j = last_one(T); T; T -= (T & (-T)), j = last_one(T))
upd(rt, dp(L, pl, i, j, S ^ ( << i)));
} if (pl < len[L] || pr) {
int vl = s[L][pl], vr = ((pr) ? (s[R][pr - ]) : ());
if (vl == vr)
upd(rt, dp(L, pl + , R, pr - , S) + );
// if (pl < len[L] && _exi[R][pr] & (1 << vl))
if (pl < len[L] && exi[R][pr] & ( << vl))
upd(rt, dp(L, pl + , R, pr, S) + );
if (pr && exi[L][pl] & ( << vr))
upd(rt, dp(L, pl, R, pr - , S) + );
}
// cerr << L << " " << pl << " " << R << " " << pr << " " << S << " " << rt << '\n';
return rt;
} inline void solve() {
// forward
for (int idx = ; idx < n; idx++) {
for (int pos = ; pos <= len[idx]; pos++) {
for (int ano = ; ano < n; ano++) {
if (ano ^ idx)
can[idx][pos] |= check(idx, pos, ano) << ano;
}
// cerr << can[idx][pos] << ' ';
}
}
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
if (i ^ j) {
for (int pos = ; pos <= len[j]; pos++)
if ((can[j][pos] >> i) & )
usable[i][j] |= ( << pos);
}
}
}
len[n] = ;
for (int i = ; i < N; i++) {
exi[n][i] = ; //_exi[n][i] = 2046;
can[n][i] = ;
}
int all = ( << n) - , ans = Lim;
// ans = dp(n, 0, 1, len[1], all ^ 2);
for (int i = ; i < n; i++) {
upd(ans, dp(n, , i, len[i], all ^ ( << i)));
}
if (ans == Lim)
puts("-1");
else
printf("%d\n", ans);
} int main() {
init();
solve();
return ;
}
loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划的更多相关文章
- LOJ #6037.「雅礼集训 2017 Day4」猜数列 状压dp
这个题的搜索可以打到48分…… #include <cstdio> #include <cstring> #include <algorithm> ; bool m ...
- Loj 6036 「雅礼集训 2017 Day4」编码 - 2-sat
题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对 ...
- 2018.10.27 loj#6035. 「雅礼集训 2017 Day4」洗衣服(贪心+堆)
传送门 显然的贪心题啊...考试没调出来10pts滚了妙的一啊 直接分别用堆贪心出洗完第iii件衣服需要的最少时间和晾完第iii件衣服需要的最少时间. 我们设第一个算出来的数组是aaa,第二个是bbb ...
- LOJ#6035. 「雅礼集训 2017 Day4」洗衣服
传送门 先处理出每一件衣服最早什么时候洗完,堆+贪心即可 然后同样处理出每件衣服最早什么时候烘干 然后倒序相加取最大值 # include <bits/stdc++.h> using na ...
- LOJ #6035.「雅礼集训 2017 Day4」洗衣服 贪心
这道题的贪心好迷啊~我们对于两个过程进行单独贪心,然后再翻转一个,把这两个拼起来.先说一下单独贪心,单独贪心的话就是用一个堆,每次取出最小的,并且把这个最小的加上他单次的,再放进去.这样,我们得到的结 ...
- LOJ #6036.「雅礼集训 2017 Day4」编码 Trie树上2-sat
记得之前做过几道2-sat裸体,以及几道2-sat前缀优化建图,这道题使用了前缀树上前缀树优化建图.我们暴力建图肯定是n^2级别的,那么我们要是想让边数少点,就得使用一些骚操作.我们观察我们的限制条件 ...
- [LOJ 6031]「雅礼集训 2017 Day1」字符串
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...
- [LOJ 6030]「雅礼集训 2017 Day1」矩阵
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...
- [LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...
随机推荐
- [crypto] AEAD是啥
AEAD这个缩写根据不同的语境有两个理解角度:认证加密机制,认证加密方式. 认证加密机制是指:一些用来完成认证加密工作的方法,拆分为认证和加密两部分来做,先加密后加密先认证后认证都无所谓,整个过程或者 ...
- linux信息收集
1.系统区分debian系列:debian.ubunturedhat系列:redhat.centos 是否为docker.或者为虚拟机 分为通用模块.单独模块的信息获取 2.系统信息收集 内核(是否为 ...
- java script基本数据类型与数组
基本数据类型 1.undefined (var a;) 2.null (var a=null); 3.String (var a=" " or ' '); 4.boolea ...
- mysql8.0.13免安装版的安装配置详解
一.下载 下载地址:https://dev.mysql.com/downloads/mysql/ 二.解压到某个目录,例如:D:/mysql/mysql-8.0.13-winx64 三.配置环境变量 ...
- 在linux系统中出现u盘问题 的相关解决方法
1.显示unknown filesystem type .exfat 可以通过该方法解决: 安装exfat-fuse: 在终端中以管理员身份运行 sudo apt-get install exfat- ...
- 如何成功安装旧版本火狐,成功安装firebug和firepath插件
很久不用火狐了,为了练习selenium定位浏览器等操作,下载了火狐浏览器,新版火狐已经没有firebug和firepath等插件,无法使用,只有安装老版本的火狐:*****安装好之后立刻设置不让他自 ...
- 马拉车算法,mannacher查找最长回文子串
作用: 在线性时间内找到一个字符串的最大回文子串 原理: 奇偶变换:为处理字符串方便,现将给定的任意字符串进行处理,使所有可能的奇数/偶数长度的回文子串都转换成了奇数长度. 具体就是在每个字符的两边都 ...
- 《图解HTTP》读书笔记(二:各种协议与HTTP协议之间的关系)
涉及到DNS协议.TCP协议.IP协议,话不多说,上图:
- C#基础加强(7)之ref与out
介绍 给方法传递普通参数时,值类型传递的是拷贝的对象,而引用类型传递的是对象的引用.它们都不能在函数内部直接修改外部变量的引用(不是修改引用类型的属性),而使用 ref 或 out 关键字就可以实现. ...
- 导出CityGML
通过代码实现了导出CityGML功能