题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可以通过快速幂快速求出。

因为n的数据范围较大,所以要用到卢卡斯定理:若p为素数,那么C(m,n)%p = C(m/p,n/p) * C(m%p,n%p)  % p.从而我们可以递归的可以求出C(m,n),当n==0,返回1.

因为方格含有两个三角形,所以Catalan[n]*2 即是最终答案

#include<stdio.h>
#include<math.h>
#include<vector>
#include<stack>
#include<set>
#include<string.h>
#include<iostream>
#include<algorithm>
#define MAXSIZE 10005
#define INF 0x3f3f3f3f
using namespace std;
#define LL long long
const LL mod = 1e4+;
LL inv[mod+]; LL Pow(LL n,LL m)
{
n %= mod;
LL ans = ;
while(m>)
{
if(m%)
ans = (ans*n)%mod;
n = (n*n)%mod;
m /= ;
}
return ans;
} LL C(LL m,LL n) //对mod取模后,m,n的值均小于1e4+7,直接求组合即可
{
if(n > m)
return ;
LL ans = ;
for(int i=; i<=n; i++)
{
ans = ans*(m-i+)%mod*inv[i]%mod;
}
return ans;
} LL Lucas(LL n, LL m) //卢卡斯定理
{
if(m==)
return ;
return Lucas(n/mod,m/mod)%mod*C(n%mod,m%mod)%mod;
} LL Solve(LL n)
{
LL ans = Lucas(*n,n)%mod;
LL Inv = Pow(n+,mod-); //inv(n+1)
ans = ans%mod*Inv%mod;
return ans * % mod;
} int main()
{
for(int i=; i<=mod; i++)
inv[i] = Pow(i,mod-); //预处理求出逆元
LL n;
scanf("%lld",&n);
LL ans = Solve(n-);
printf("%lld\n",ans);
return ;
}

1120 机器人走方格 V3(组合数)的更多相关文章

  1. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  2. 1120 机器人走方格 V3

    1120 机器人走方格 V3 基准时间限制:1 秒 空间限制:131072 KB N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走, ...

  3. 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】

    -我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...

  4. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  5. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

  6. 机器人走方格 V3

    1120 . 机器人走方格 V3   基准时间限制:1 秒 空间限制:65536 KB 分值: 160 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在 ...

  7. 51nod1120 机器人走方格 V3

    跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了.那么就是卡特兰数了.然后由于n和m太大所以用了lucas定理 //跟括号序列是一样的,将向右走看成是左括号向左走看成是右括号就可以了 ...

  8. 51nod_1120:机器人走方格 V3

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 Catalan数 基础题,ans=C(2n-2,n-2 ...

  9. 51Nod 机器人走方格 V3 —— 卡特兰数、Lucas定理

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 题解: 1.看到这种题,马上就想到了卡特兰数.但卡特兰数 ...

随机推荐

  1. android开发学习 ------- 关于getSupportFragmentManager()不可用的问题

    在Android开发中,少不了Fragment的运用. 目前在实际运用中,有v-4包下支持的Fragment以及app包下的Fragment,这两个包下的FragmentManager获取方式有点区别 ...

  2. ubuntu 16.04 LTS - 谷歌拼音输入法

    https://blog.csdn.net/chengyq116/article/details/78638249 1. installation1.1 汉语语言包 sudo apt-get inst ...

  3. MySQL参数最大连接数max_connections

    1.查看最大连接数 mysql> show status like 'Threads%'; +-------------------+-------+ | Variable_name | Val ...

  4. 2.[Andriod]Andriod Studio结合Visual Studio Emulator for Android调试Android App

    0. 工欲善其事必先利其器 上一篇博客对比了一下Android和WinPhnoe的布局容器,后续篇章重点放在Android的开发上了. 说到开发就绕不开调试程序,调试Android App我们有2种选 ...

  5. js 对数据进行过滤

    //对数据进行过滤 Array.prototype.filter = Array.prototype.filter || function (func) { var arr = this; var r ...

  6. SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

    题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...

  7. vue axios封装以及登录token过期跳转问题

    Axios配置JWT/封装插件/发送表单数据 首先请务必已仔细阅读 Axios 文档并熟悉 JWT: 中文文档 JWT 中文文档 安装 npm install axios npm install es ...

  8. 使用chrome开发者工具中的network面板测量网站网络性能

    前面的话 Chrome 开发者工具是一套内置于Google Chrome中的Web开发和调试工具,可用来对网站进行迭代.调试和分析.使用 Network 面板测量网站网络性能.本文将详细介绍chrom ...

  9. Java爬取12306余票

    一.前言 今年国庆和中秋一起放,虽然很欢快,但是没有票了!!! 于是自己倒腾了一个查询余票的小程序. 二.准备工作 1.先打开12306的页面 2.然后右键检查,点network 3.再点一下1230 ...

  10. POJChallengeRound2 Guideposts 【单位根反演】【快速幂】

    题目分析: 这题的目标是求$$ \sum_{i \in [0,n),k \mid i} \binom{n}{i}G^i $$ 这个形式很像单位根反演. 单位根反演一般用于求:$ \sum_{i \in ...