TensorFlow GPU版本号与CUDA的对应产生的错误
前言
最近在新的工作站上重新装TensorFlow的GPU版本,刚开始由于省事,直接更新到最新版本1.13,然后输入hello TensorFlow程序。但是却报错“ImportError: DLL load failed: 找不到指定的模块”。无奈之下,各种百度,看到有个比较旧博客提议将TensorFlow版本降低到1.4,于是先卸载再重装,一顿修改之后,又报错“Could not find 'cudart64_80.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Download and install CUDA 8.0 from this URL: https://developer.nvidia.com/cuda-toolkit”,这句话的意思就是说我装的TensorFlow版本太低,只能支持CUDA8.0,但是我装的是CUDA9.0,所以出现了不对应。后来,又卸载当前TensorFlow环境,指定安装1.7版本,搞定。特此记录下来,防止后人少踩坑。
以下图示均为命令行操作
TensorFlow版本过低,CUDA版本过高
具体报错如下:
(tensorflow-gpu) C:\Users\WW>python
Python 3.6. |Continuum Analytics, Inc.| (default, Jul , ::) [MSC v. bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
Traceback (most recent call last):
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\platform\self_check.py", line , in preload_check
ctypes.WinDLL(build_info.cudart_dll_name)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\ctypes\__init__.py", line , in __init__
self._handle = _dlopen(self._name, mode)
OSError: [WinError ] 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "<stdin>", line , in <module>
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\__init__.py", line , in <module>
from tensorflow.python import *
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\__init__.py", line , in <module>
from tensorflow.python import pywrap_tensorflow
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
self_check.preload_check()
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\platform\self_check.py", line , in preload_check
% (build_info.cudart_dll_name, build_info.cuda_version_number))
ImportError: Could not find 'cudart64_80.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Download and install CUDA 8.0 from this URL: https://developer.nvidia.com/cuda-toolkit
TensorFlow版本过高,CUDA版本过低
具体错误如下所示:
(tensorflow-gpu) C:\Users\WW>python
Python 3.6. |Continuum Analytics, Inc.| (default, Jul , ::) [MSC v. bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
Traceback (most recent call last):
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_module
return load_dynamic(name, filename, file)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_dynamic
return _load(spec)
ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "<stdin>", line , in <module>
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\__init__.py", line , in <module>
from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\__init__.py", line , in <module>
from tensorflow.python import pywrap_tensorflow
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
raise ImportError(msg)
ImportError: Traceback (most recent call last):
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_module
return load_dynamic(name, filename, file)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_dynamic
return _load(spec)
ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
TensorFlow与CUDA版本的对应关系
附上几张表格:
具体最新版本对应可参考TensorFlow中文网址:https://www.tensorflow.org/install/source#tested_source_configurations
总结
- 安装环境时参考的博客一定要注意时间,时间,时间。有可能当时可以的现在就不一定行了,版本问题真的很烦人呐呐呐
- 切勿贪图省事,更新到最新版本,要提前了解清楚,然后再装对应的版本
参考
https://blog.csdn.net/yeler082/article/details/80943040
TensorFlow GPU版本号与CUDA的对应产生的错误的更多相关文章
- windows安装tensorflow GPU
一.安装Anaconda Anaconda是Python发行包,包含了很多Python科学计算库.它是比直接安装Python更好的选择. 二.安装Tensorflow 如果安装了tensorflow, ...
- Ubuntu 16.04 + CUDA 8.0 + cuDNN v5.1 + TensorFlow(GPU support)安装配置详解
随着图像识别和深度学习领域的迅猛发展,GPU时代即将来临.由于GPU处理深度学习算法的高效性,使得配置一台搭载有GPU的服务器变得尤为必要. 本文主要介绍在Ubuntu 16.04环境下如何配置Ten ...
- Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南
Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南 Update : 2019.03.08 0. 环境说明 硬件:Ryzen R ...
- tensorflow -gpu安装,史上最新最简单的途径(不用自己装cuda,cdnn)
tensorflow -gpu安装首先,安装Anoconda1. 官网下载点我: 2.安装 点击 python 3.6 version自动下载x64版,下载好之后,然后安装. 如图,打上勾之后,一路n ...
- TensorFlow GPU版本的安装与调试
笔者采用python3.6.7+TensorFlow1.12.0+CUDA10.0+CUDNN7.3.1构建环境 PC端配置为GTX 1050+Intel i7 7700HQ 4核心8线程@2.8GH ...
- tensorflow各个版本的CUDA以及Cudnn版本对应关系
概述,需要注意以下几个问题: (1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运 ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
- 备注: ubt 16.04 安装 gtx 1060 --- 成功运行 tensorflow - gpu
---------------------------------------------------------------------------------------------------- ...
- win10系统下安装TensorFlow GPU版本
首先要说,官网上的指南是最好的指南. https://www.tensorflow.org/install/install_windows 需要FQ看. 想要安装gpu版本的TensorFlow.我们 ...
随机推荐
- iOS 关于监听手机截图,UIView生成UIImage, UIImage裁剪与压缩的总结
一. 关于监听手机截图 1. 背景: 发现商品的售价页总是被人转发截图,为了方便用户添加截图分享的小功能 首先要注册用户截屏操作的通知 - (void)viewDidLoad { [super vi ...
- Riccati方程(微分方程)
形如:$$\frac{dy}{dx}=P(x)y^{2}+Q(x)y+R(x)$$ 其中P(x).Q(x).R(x)是连续可微函数 或形如 $$\frac{dy}{dx}=ay^{2}+\frac{k ...
- Spring Boot与分布式
---恢复内容开始--- 分布式.Dubbo/Zookeeper.Spring Boot/Cloud 一.分布式应用 在分布式系统中,国内常用zookeeper+dubbo组合, 而Spring Bo ...
- rabbtimq非持久化测试
send端代码 import pika,time,threading class send(): def __init__(self,que_nam='hello'): self.credential ...
- iOS XIB使用中适配iPhoneX的安全区域、调用UiView动画
2.调用UiView动画 WeakSelf; self.detailsViewBom.constant += 230; [UIView animateWithDuration:animotiontim ...
- B-Tree和B+Tree的区别
B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引.B+树中的B代表平衡(balance),而不是二叉(binary),因为B+树是从最早的平衡二叉树演化而来的.在讲B ...
- ZYNQ原理图中添加RTL设计模块
前言 已有的RTL模块怎么添加到原理图中? 流程 (1)添加文件到设计中. (2)右键文件添加到block design中. (3)连线即可. 以上.
- 对于BFS的理解和部分例题(
(图文无关 雾 搜索是一个NOIP当中经常出现的考点,其实搜索换个方式来想也无非就是让电脑来帮你试,最后得到一个结果,当然这么口胡谁都会,那么我们就来看看搜索当中的一个大部分: BFS(广度优先 ...
- laravel 配置MySQL读写分离
前言:说到应对大流量.高并发的解决方案的时候,总会有这样的回答,如:读写分离,主从复制...等,数据库层今天先不讨论,那么今天我们就来看看怎么在应用层实现读写分离. 框架:laravel5.7(所有配 ...
- oracle利用job创建一个定时任务,定时调用存储过程
--创建表 create table TESTWP ( ID ), C_DATE DATE ); select * from TESTWP; --2.创建一个sequence create seque ...