TensorFlow GPU版本号与CUDA的对应产生的错误
前言
最近在新的工作站上重新装TensorFlow的GPU版本,刚开始由于省事,直接更新到最新版本1.13,然后输入hello TensorFlow程序。但是却报错“ImportError: DLL load failed: 找不到指定的模块”。无奈之下,各种百度,看到有个比较旧博客提议将TensorFlow版本降低到1.4,于是先卸载再重装,一顿修改之后,又报错“Could not find 'cudart64_80.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Download and install CUDA 8.0 from this URL: https://developer.nvidia.com/cuda-toolkit”,这句话的意思就是说我装的TensorFlow版本太低,只能支持CUDA8.0,但是我装的是CUDA9.0,所以出现了不对应。后来,又卸载当前TensorFlow环境,指定安装1.7版本,搞定。特此记录下来,防止后人少踩坑。
以下图示均为命令行操作
TensorFlow版本过低,CUDA版本过高
具体报错如下:
(tensorflow-gpu) C:\Users\WW>python
Python 3.6. |Continuum Analytics, Inc.| (default, Jul , ::) [MSC v. bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
Traceback (most recent call last):
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\platform\self_check.py", line , in preload_check
ctypes.WinDLL(build_info.cudart_dll_name)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\ctypes\__init__.py", line , in __init__
self._handle = _dlopen(self._name, mode)
OSError: [WinError ] 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "<stdin>", line , in <module>
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\__init__.py", line , in <module>
from tensorflow.python import *
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\__init__.py", line , in <module>
from tensorflow.python import pywrap_tensorflow
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
self_check.preload_check()
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\platform\self_check.py", line , in preload_check
% (build_info.cudart_dll_name, build_info.cuda_version_number))
ImportError: Could not find 'cudart64_80.dll'. TensorFlow requires that this DLL be installed in a directory that is named in your %PATH% environment variable. Download and install CUDA 8.0 from this URL: https://developer.nvidia.com/cuda-toolkit
TensorFlow版本过高,CUDA版本过低
具体错误如下所示:
(tensorflow-gpu) C:\Users\WW>python
Python 3.6. |Continuum Analytics, Inc.| (default, Jul , ::) [MSC v. bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
Traceback (most recent call last):
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_module
return load_dynamic(name, filename, file)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_dynamic
return _load(spec)
ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "<stdin>", line , in <module>
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\__init__.py", line , in <module>
from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\__init__.py", line , in <module>
from tensorflow.python import pywrap_tensorflow
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
raise ImportError(msg)
ImportError: Traceback (most recent call last):
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line , in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line , in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_module
return load_dynamic(name, filename, file)
File "D:\TensorFlow\Anaconda\Anaconda\envs\tensorflow-gpu\lib\imp.py", line , in load_dynamic
return _load(spec)
ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
TensorFlow与CUDA版本的对应关系
附上几张表格:



具体最新版本对应可参考TensorFlow中文网址:https://www.tensorflow.org/install/source#tested_source_configurations
总结
- 安装环境时参考的博客一定要注意时间,时间,时间。有可能当时可以的现在就不一定行了,版本问题真的很烦人呐呐呐
- 切勿贪图省事,更新到最新版本,要提前了解清楚,然后再装对应的版本
参考
https://blog.csdn.net/yeler082/article/details/80943040
TensorFlow GPU版本号与CUDA的对应产生的错误的更多相关文章
- windows安装tensorflow GPU
一.安装Anaconda Anaconda是Python发行包,包含了很多Python科学计算库.它是比直接安装Python更好的选择. 二.安装Tensorflow 如果安装了tensorflow, ...
- Ubuntu 16.04 + CUDA 8.0 + cuDNN v5.1 + TensorFlow(GPU support)安装配置详解
随着图像识别和深度学习领域的迅猛发展,GPU时代即将来临.由于GPU处理深度学习算法的高效性,使得配置一台搭载有GPU的服务器变得尤为必要. 本文主要介绍在Ubuntu 16.04环境下如何配置Ten ...
- Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南
Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南 Update : 2019.03.08 0. 环境说明 硬件:Ryzen R ...
- tensorflow -gpu安装,史上最新最简单的途径(不用自己装cuda,cdnn)
tensorflow -gpu安装首先,安装Anoconda1. 官网下载点我: 2.安装 点击 python 3.6 version自动下载x64版,下载好之后,然后安装. 如图,打上勾之后,一路n ...
- TensorFlow GPU版本的安装与调试
笔者采用python3.6.7+TensorFlow1.12.0+CUDA10.0+CUDNN7.3.1构建环境 PC端配置为GTX 1050+Intel i7 7700HQ 4核心8线程@2.8GH ...
- tensorflow各个版本的CUDA以及Cudnn版本对应关系
概述,需要注意以下几个问题: (1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运 ...
- 【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...
- 备注: ubt 16.04 安装 gtx 1060 --- 成功运行 tensorflow - gpu
---------------------------------------------------------------------------------------------------- ...
- win10系统下安装TensorFlow GPU版本
首先要说,官网上的指南是最好的指南. https://www.tensorflow.org/install/install_windows 需要FQ看. 想要安装gpu版本的TensorFlow.我们 ...
随机推荐
- 最新 robot framework安装
相信大家对robot framework并不陌生,它是一个基于Python语言,用于验收测试和验收测试驱动开发(ATDD)的通用测试自动化框架=,提供了一套特定的语法,并且有非常丰富的测试库. Pyt ...
- 面试中被问Spring循环依赖的三种方式!!!
什么是循环依赖? 循环依赖其实就是循环引用,也就是两个或则两个以上的 Bean 互相持有对方,最终形成闭环.比如A依赖于B,B依赖于C,C又依赖于A.如下图: 如果在日常开发中我们用new 对象的方式 ...
- ios 添加三方字体
字体文件一般后缀名为.ttf 或.odf (备注: 有的字体是收费的,不能用于商业应用.所以还请设计师选择免费的字体好一点,不然会收到律师函哦) 1 加入字体文件 2. info.plist 文件引入 ...
- DAY29、元类
一.eval内置函数eval内置函数的使用场景: 1.执行字符串会得到相应的执行结果 2.一般用于类型转换,得到dict.list.tuple例: dic_str = ''{'a':1,'b':2}' ...
- C++编程音视频库ffmpeg的pts时间换算方法
ffmpeg中的pts,dts,duration时间记录都是基于timebase换算,我们主要分析下pts的时间怎么换算,其它的是一样的换算.ffmpeg的时间换算对许多新接触同学算是一个大坑,很多刚 ...
- [ffmpeg] 定制滤波器
如果有定制ffmpeg滤波器的需求,有两个结构体是必须要了解的:AVFilter.AVFilterPad,所定制的滤波器主要就是通过填充这两个结构体来实现的.我们下面将详细解析这两个结构体,并通过对滤 ...
- zookeeper集群的简单搭建
zookeeper简单介绍 zookeeper是一个为分布式应用提供一致性服务的软件,它是开源的Hadoop项目的一个子项目,并根据google发表的一篇论文来实现的.zookeeper为分布式系统提 ...
- 【LUOGU???】WD与地图 整体二分 线段树合并
题目大意 有一个简单有向图.每个点有点权. 有三种操作: 修改点权 删除一条边 询问和某个点在同一个强连通分量中的点的前 \(k\) 大点权和. \(n\leq 100000,m,q\leq 2000 ...
- 解析.DBC文件, 读懂CAN通信矩阵,实现车内信号仿真
通常我们拿到某个ECU的通信矩阵数据库文件,.dbc后缀名的文件. 直接使用CANdb++ Editor打开,可以很直观的读懂信号矩阵的信息,例如下图: 现在要把上图呈现的信号从.dbc文件中解析出来 ...
- Codeforces Global Round 1 A~F
失踪人口回来写题了.. 写了几乎一下午.贴一贴代码以及口糊一下. A. 题意:计算一下这个多项式的和. 题解:暴力算一算对每一项异或一下. #include<bits/stdc++.h> ...