[模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串
回文树/回文自动机
放链接:
状态数的线性证明
并没有看懂上面的证明,所以自己脑补了一个...
引理: 每一个回文串都是字符串某个前缀的最长回文后缀.
证明. 考虑一个回文串在字符串中第一次出现的位置, 记为 \(S_{p_1 ... p_2}\), 它一定是 \(S_{1 ... p_2}\)的最长回文后缀.
否则, 如果有 \(S_{p_3 ... p_2} (p_3<p_1)\) 也为回文串, 那么由于回文, \(S_{p_3 ... p_3-p_2+p_1} = S_{p_1 ... p_2}\), \(S_{p_1 ... p_2}\)并不是它第一次出现的位置.矛盾.
因而命题得证.
而每个点的最长回文后缀是唯一的, 因此\(S\)最多只有\(|S|\)个不同的回文子串.
引理的推论. 一个回文串 \(\leftrightarrow\) 某个串的最长回文子串 && 某个串的最长回文子串的回文后缀.
关于fail指针
fail指针指向的是一个节点代表的回文串的最长回文后缀.
在build时, 它也可以理解为以某个点为结尾的次长回文后缀.
Code
const int ssz=300050;
ll n;
char s[ssz];
struct te{int l,fail,cnt,ch[27];}tree[ssz]{{0,1},{-1,1}};
int pt=1,rt0=0,rt1=1;
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fail
int newnd(){return ++pt;}
int getfail(int p,int i){
while(s[i-1-tree[p].l]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=newnd();
tree[q].l=tree[p].l+2,fail(q)=ch(getfail(fail(p),i),s[i]);
ch(p,s[i])=q;
}
last=ch(p,s[i]);
++tree[last].cnt;
}
}
应用
枚举所有回文子串
dfs即可.
拓扑序
显然拓扑序就是 ${ 1, 2, \cdots, n } $.
求字符串出现次数
加入每个字符后, ++cnt[last];;
然后逆拓扑序dp, cnt[fa(p)] += cnt[p].
cnt[p] 即为回文串 \(p\) 出现次数.
详见下面的题.
每个节点长度 \(\le \frac {len}2\) 的回文后缀
和维护fail指针大体类似, 加上限制条件即可.
详见代码.
其中tree[p].tr表示的是 \(p\) 节点长度 \(\le \frac {len}2\) 的回文后缀
struct tnd{int l,fi,ch[csz],tr;}tree[ssz];
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fi
#define trl(p) tree[p].l
#define trtr(p) tree[p].tr
int rt0=0,rt1=1,pt=1;
int getfail(int p,int i){
while(s[i-1-trl(p)]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=++pt;
trl(q)=trl(p)+2,fail(q)=ch(getfail(fail(p),i),s[i]);
//get tr(p) start
if(trl(q)<=1)trtr(q)=fail(q);
else{
int z=trtr(p);
while(s[i-1-trl(z)]!=s[i]||(trl(z)+2)*2>trl(q))z=fail(z);
trtr(q)=ch(z,s[i]);
}
//end
ch(p,s[i])=q;
}
last=ch(p,s[i]);
}
}
例题
BZOJ3676:[Apio2014]回文串
求回文串长度*出现次数的最大值.
板子题.
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
const int ssz=300050;
ll n,ans=0;
char s[ssz];
struct te{int l,fail,cnt,ch[27];}tree[ssz]{{0,1},{-1,1}};
int pt=1,rt0=0,rt1=1;
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fail
int newnd(){return ++pt;}
int getfail(int p,int i){
while(s[i-1-tree[p].l]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=newnd();
tree[q].l=tree[p].l+2,fail(q)=ch(getfail(fail(p),i),s[i]);
ch(p,s[i])=q;
}
last=ch(p,s[i]);
++tree[last].cnt;
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>(s+1);
n=strlen(s+1);
rep(i,1,n)s[i]-='a'-1;
build();
repdo(i,pt,2){
tree[fail(i)].cnt+=tree[i].cnt;
ans=max(ans,(ll)tree[i].cnt*tree[i].l);
}
cout<<ans<<'\n';
return 0;
}
[模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串的更多相关文章
- bzoj3676 [Apio2014]回文串 卡常+SAM+树上倍增
bzoj3676 [Apio2014]回文串 SAM+树上倍增 链接 bzoj luogu 思路 根据manacher可以知道,每次暴力扩展才有可能出现新的回文串. 所以推出本质不同的回文串个数是O( ...
- [Bzoj3676][Apio2014]回文串(后缀自动机)(parent树)(倍增)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 3396 Solved: 1568[Submit][Statu ...
- [BZOJ3676][APIO2014]回文串(Manacher+SAM)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 3097 Solved: 1408[Submit][Statu ...
- HDU - 5157 :Harry and magic string (回文树,求多少对不相交的回文串)
Sample Input aca aaaa Sample Output 3 15 题意: 多组输入,每次给定字符串S(|S|<1e5),求多少对不相交的回文串. 思路:可以用回文树求出以每个位置 ...
- HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)
CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...
- bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)
https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...
- 【回文自动机】bzoj3676 [Apio2014]回文串
回文自动机讲解!http://blog.csdn.net/u013368721/article/details/42100363 pam上每个点代表本质不同的回文子串.len(i)代表长度,cnt(i ...
- BZOJ3676[Apio2014]回文串——回文自动机
题目描述 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. 输入 输入只有一行,为一个只包含小写字 ...
- BZOJ3676 APIO2014回文串(manacher+后缀自动机)
由于本质不同的回文子串数量是O(n)的,考虑在对于每个回文子串在第一次找到它时对其暴力统计.可以发现manacher时若右端点移动则找到了一个新回文串.注意这样会漏掉串长为1的情况,特判一下. 现在问 ...
随机推荐
- HTML和CSS前端教程03-CSS选择器
目录 1. CSS定义 2. 创建CSS的三种方法 2.1. 元素内嵌(权重最高) 2.2. 文档内嵌 2.3. 外部引用 3. CSS层叠和继承 3.1. 浏览器样式 3.2. 样式表层叠 3.3. ...
- USGS-EROS项目espa-surface-reflectance中的Landsat8 大气校正LaSRC Version 1.3.0模块利用vs2010编译出windows64位版本(四)
,支持一些关键问题: 1 数据初始化问题.该问题是指在linux环境下编程标准c并编译,用户定义的变量默认初始值是0,但在windows 64 win7环境中,变量默认初始值是负值极小.... ...
- Android Button四种点击事件和长按事件
项目XML代码 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andr ...
- 南京邮电大学java程序设计作业在线编程第七次作业
王利国的"Java语言程序设计第7次作业(2018)"详细 主页 我的作业列表 作业结果详细 总分:100 选择题得分:60 1. 下列叙述中,错误的是( ). A.Java中, ...
- [Web][高中同学毕业分布去向网站+服务器上挂载]二、敲定思路与方向(HTML5+JS(JQuery+ECharts))
高中同学毕业分布网站:敲定思路 一.背景 第一集:http://www.cnblogs.com/Twobox/p/8368121.html 中大体确定了自己的 大体目标.大体思路. 但是 . 在今天的 ...
- Asp.net Core应用程序部署为服务
安装前使用dotnet命令运行下看网站能不能正常运行 1.下载nssm,下载后解压文件 下载地址:https://nssm.cc/usage 2.使用命令行工具进入到nssm的目录: 3.执行服务安装 ...
- 重装助手教你如何在Windows 10中更改您的帐户名称
当您设置新的Win10免费下载 PC时,您选择用户名的部分可能会让您措手不及.如果是这种情况,您可以选择弹出头部的第一件事或者您打算稍后更改的随机和临时事物.但令人惊讶的是,在Windows 10中更 ...
- jquery 选择器、筛选器、事件绑定与事件委派
一.jQuery简介 1.可用的jQuery服务器网站:https://www.bootcdn.cn/ jQuery是一个快速的,简洁的javaScript库,使用户能更方便地处理HTMLdocume ...
- 【模块04-大数据技术入门】02节-HDFS核心知识
分布式存储 (1) 5PB甚至更大的数据集怎么存储 ? 所有数据分块,每个数据块冗余存储在多台机器上(冗余可提高数据块高可用性).另外一台机器上启动一个管理所有节点.以及存储在各节点上面数据块的服务. ...
- redis Lua学习与坑
1.在写lua脚本往redis中添加zadd 有序集合的时候一直报 "value is not a valid float"的错误,经过查询相关资料,最后发现,是顺序写反了. 相关 ...