[模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串
回文树/回文自动机
放链接:
状态数的线性证明
并没有看懂上面的证明,所以自己脑补了一个...
引理: 每一个回文串都是字符串某个前缀的最长回文后缀.
证明. 考虑一个回文串在字符串中第一次出现的位置, 记为 \(S_{p_1 ... p_2}\), 它一定是 \(S_{1 ... p_2}\)的最长回文后缀.
否则, 如果有 \(S_{p_3 ... p_2} (p_3<p_1)\) 也为回文串, 那么由于回文, \(S_{p_3 ... p_3-p_2+p_1} = S_{p_1 ... p_2}\), \(S_{p_1 ... p_2}\)并不是它第一次出现的位置.矛盾.
因而命题得证.
而每个点的最长回文后缀是唯一的, 因此\(S\)最多只有\(|S|\)个不同的回文子串.
引理的推论. 一个回文串 \(\leftrightarrow\) 某个串的最长回文子串 && 某个串的最长回文子串的回文后缀.
关于fail指针
fail指针指向的是一个节点代表的回文串的最长回文后缀.
在build时, 它也可以理解为以某个点为结尾的次长回文后缀.
Code
const int ssz=300050;
ll n;
char s[ssz];
struct te{int l,fail,cnt,ch[27];}tree[ssz]{{0,1},{-1,1}};
int pt=1,rt0=0,rt1=1;
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fail
int newnd(){return ++pt;}
int getfail(int p,int i){
while(s[i-1-tree[p].l]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=newnd();
tree[q].l=tree[p].l+2,fail(q)=ch(getfail(fail(p),i),s[i]);
ch(p,s[i])=q;
}
last=ch(p,s[i]);
++tree[last].cnt;
}
}
应用
枚举所有回文子串
dfs即可.
拓扑序
显然拓扑序就是 ${ 1, 2, \cdots, n } $.
求字符串出现次数
加入每个字符后, ++cnt[last];;
然后逆拓扑序dp, cnt[fa(p)] += cnt[p].
cnt[p] 即为回文串 \(p\) 出现次数.
详见下面的题.
每个节点长度 \(\le \frac {len}2\) 的回文后缀
和维护fail指针大体类似, 加上限制条件即可.
详见代码.
其中tree[p].tr表示的是 \(p\) 节点长度 \(\le \frac {len}2\) 的回文后缀
struct tnd{int l,fi,ch[csz],tr;}tree[ssz];
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fi
#define trl(p) tree[p].l
#define trtr(p) tree[p].tr
int rt0=0,rt1=1,pt=1;
int getfail(int p,int i){
while(s[i-1-trl(p)]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=++pt;
trl(q)=trl(p)+2,fail(q)=ch(getfail(fail(p),i),s[i]);
//get tr(p) start
if(trl(q)<=1)trtr(q)=fail(q);
else{
int z=trtr(p);
while(s[i-1-trl(z)]!=s[i]||(trl(z)+2)*2>trl(q))z=fail(z);
trtr(q)=ch(z,s[i]);
}
//end
ch(p,s[i])=q;
}
last=ch(p,s[i]);
}
}
例题
BZOJ3676:[Apio2014]回文串
求回文串长度*出现次数的最大值.
板子题.
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
const int ssz=300050;
ll n,ans=0;
char s[ssz];
struct te{int l,fail,cnt,ch[27];}tree[ssz]{{0,1},{-1,1}};
int pt=1,rt0=0,rt1=1;
#define ch(p,c) tree[p].ch[c]
#define fail(p) tree[p].fail
int newnd(){return ++pt;}
int getfail(int p,int i){
while(s[i-1-tree[p].l]!=s[i])p=fail(p);
return p;
}
void build(){
int p,q,last=0;
rep(i,1,n){
p=getfail(last,i);
if(ch(p,s[i])==0){
q=newnd();
tree[q].l=tree[p].l+2,fail(q)=ch(getfail(fail(p),i),s[i]);
ch(p,s[i])=q;
}
last=ch(p,s[i]);
++tree[last].cnt;
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>(s+1);
n=strlen(s+1);
rep(i,1,n)s[i]-='a'-1;
build();
repdo(i,pt,2){
tree[fail(i)].cnt+=tree[i].cnt;
ans=max(ans,(ll)tree[i].cnt*tree[i].l);
}
cout<<ans<<'\n';
return 0;
}
[模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串的更多相关文章
- bzoj3676 [Apio2014]回文串 卡常+SAM+树上倍增
bzoj3676 [Apio2014]回文串 SAM+树上倍增 链接 bzoj luogu 思路 根据manacher可以知道,每次暴力扩展才有可能出现新的回文串. 所以推出本质不同的回文串个数是O( ...
- [Bzoj3676][Apio2014]回文串(后缀自动机)(parent树)(倍增)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 3396 Solved: 1568[Submit][Statu ...
- [BZOJ3676][APIO2014]回文串(Manacher+SAM)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 3097 Solved: 1408[Submit][Statu ...
- HDU - 5157 :Harry and magic string (回文树,求多少对不相交的回文串)
Sample Input aca aaaa Sample Output 3 15 题意: 多组输入,每次给定字符串S(|S|<1e5),求多少对不相交的回文串. 思路:可以用回文树求出以每个位置 ...
- HDU5658:CA Loves Palindromic (回文树,求区间本质不同的回文串数)
CA loves strings, especially loves the palindrome strings. One day he gets a string, he wants to kno ...
- bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)
https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...
- 【回文自动机】bzoj3676 [Apio2014]回文串
回文自动机讲解!http://blog.csdn.net/u013368721/article/details/42100363 pam上每个点代表本质不同的回文子串.len(i)代表长度,cnt(i ...
- BZOJ3676[Apio2014]回文串——回文自动机
题目描述 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. 输入 输入只有一行,为一个只包含小写字 ...
- BZOJ3676 APIO2014回文串(manacher+后缀自动机)
由于本质不同的回文子串数量是O(n)的,考虑在对于每个回文子串在第一次找到它时对其暴力统计.可以发现manacher时若右端点移动则找到了一个新回文串.注意这样会漏掉串长为1的情况,特判一下. 现在问 ...
随机推荐
- JSON WEB TOKEN(JWT)的分析
JSON WEB TOKEN(JWT)的分析 一般情况下,客户的会话数据会存在文件中,或者引入redis来存储,实现session的管理,但是这样操作会存在一些问题,使用文件来存储的时候,在多台机器上 ...
- Dynamics 365 Customer Engagement安装FAQ
微软动态CRM专家罗勇 ,回复310或者20190308可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 本文参考了包括但不限 ...
- Dynamics 365创建用户提示:您正在尝试使用已由其他用户使用的域登录来创建用户。如何解决。
摘要: 本人微信公众号:微软动态CRM专家罗勇 ,回复287或者20181128可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me ...
- 解决Centos7 yum 出现could not retrieve mirrorlist 错误
刚通过VMware12安装了centos7.x后,使用ip addr查看centos局域网的ip发现没有,使用yum安装一些工具包时也出现报错: Loaded plugins: fastestmirr ...
- 彻底关闭Excle进程的几个方法
之前研究过的问题,最近有朋友问,这里再总结下做一个笔记. 我们在应用程序里面通过创建Excle应用对象打开Excle的情况下,如果不注意几个问题,可能无法彻底关闭Excle进程,来考察下面的几种情况: ...
- android java.lang.IllegalStateException: Circular dependencies cannot exist in RelativeLayout
造成这个问题的原因是在xml文件中出现了重复依赖,何为重复依赖,如下: 以上便叫重复依赖 转载请标明出处:http://www.cnblogs.com/tangZH/p/8386978.html
- java之网络爬虫介绍
文章大纲 一.网络爬虫基本介绍二.java常见爬虫框架介绍三.WebCollector实战四.项目源码下载五.参考文章 一.网络爬虫基本介绍 1. 什么是网络爬虫 网络爬虫(又被称为网页蜘蛛, ...
- 【已解决】checkout 配置无效的问题可以进来看下
在日常工作中,我们经常会遇到要更新一个项目,但是由于更改了配置,需要将这些配置commit或者checkout,但是有的同学不想commit怎么办呢,只能通过checkout,那么问题又来了,改了很多 ...
- 01-vue学习之前的准备
一.具备的基础知识 1.扎实的HTML/CSS/Javascript基本功,这是前置条件. 2.不要用任何的构建项目工具,只用最简单的<script>,把教程里的例子模仿一遍,理解用法.不 ...
- SQL Server 迁移至MySQL 关键步骤的梳理总结
迁移主要是通过Navicat工具来实现的.迁移工具的选定在此不讨论. 迁移前准备 1.提前通知DBA\SA\BI等,并确认发布计划及数据库迁移方案. 2.梳理出SQL Server DB 中影响业务 ...