[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组
试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p }{\p x}p(\tau)&=F. \eea \eeex$$ 化为守恒律形式的一阶拟线性对称双曲组. 这里假定 $p'(\tau)<0$.
解答: 由于流场是均熵流, 而 $$\bex \rd e=-p\rd \tau. \eex$$ 取 $$\bex W=e+\cfrac{u^2}{2}, \eex$$ 则 $$\bex \cfrac{\p W}{\p t} =-p\cfrac{\p \tau}{\p t} +u\cfrac{\p u}{\p t} =-p\cfrac{\p u}{\p x} +u\cdot\sex{-\cfrac{\p p}{\p x}} =-\cfrac{\p}{\p x}(pu). \eex$$ 由于 $W$ 关于 $\tau,u$ 的 Hessian $$\bex \sex{\ba{cc} -p'(\tau)&0\\ 0&1 \ea} \eex$$ 是正定的, 我们可据定理 1. 1 (书 P 96) 及其证明知, 通过未知函数变换 $$\bex v_0=\cfrac{\p W}{\p \tau}=-p,\quad v_1=\cfrac{\p W}{\p u}=u, \eex$$ 可将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组 $$\bex \cfrac{\p L^0_{v_i}}{\p t}+\cfrac{\p}{\p x}L^1_{v_i}=0,\quad i=0,1, \eex$$ 其中 $$\beex \bea L^0&=-p\tau +u^2-\sex{e+\cfrac{u^2}{2}} =-p\tau -e+\cfrac{u^2}{2},\\ L^1&=(-p)\cdot (-u)+up -pu=pu. \eea \eeex$$ 于是所求为 $$\beex \bea \cfrac{\p }{\p t}[-p'(\tau)\tau]+\cfrac{\p}{\p x}[p'(\tau)u]&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p}{\p x}p(\tau)&=0. \eea \eeex$$
[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组的更多相关文章
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第1章习题13 静磁场的矢势在媒质交界面上的条件
试讨论对静磁场的矢势, 如何决定其在媒质交界面上的条件. 解答: 由 $\rot{\bf A}={\bf B}$ 知 $$\bex \oint_l {\bf A}\cdot\rd {\bf l} =\ ...
- [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...
- [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式. 证明: 注意到 $$\beex \bea \c ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
随机推荐
- 构建高性能服务 Java高性能缓冲设计 vs Disruptor vs LinkedBlockingQueue
一个仅仅部署在4台服务器上的服务,每秒向Database写入数据超过100万行数据,每分钟产生超过1G的数据.而每台服务器(8核12G)上CPU占用不到100%,load不超过5.这是怎么做到呢?下面 ...
- java多线程(死锁,lock接口,等待唤醒机制)
一.Lock接口 常用方法 Lock提供了一个更加面对对象的锁,在该锁中提供了更多的操作锁的功能. 使用Lock接口,以及其中的lock()方法和unlock()方法替代同步,对电影院卖票案例中Tic ...
- springcloud ribbon 客户端负载均衡用法
org.springframework.web.util.NestedServletException: Request processing failed; nested exception is ...
- gulp配置(编译压缩转码自动刷新注释全)
参考自:http://www.sheyilin.com/2016/02/gulp_introduce/ 在原先基础上增加了less编译 es6转码资源地图等,修改了一部分的热刷新. gulpfile. ...
- 3.20 总结 java程序流程控制
- 阿里云RDS for MySQL 快速入门——笔记
1初始化配置 1.1设置白名单 创建RDS实例后,需要设置RDS实例的白名单,以允许外部设备访问该RDS实例.默认的白名单只包含默认IP地址127.0.0.1,表示任何设备均无法访问该RDS实例. 设 ...
- AI pytorch
pytorch 参考链接: https://pytorch.org
- Filebeat原理与简单配置入门
Filebeat工作原理 Filebeat由两个主要组件组成:prospectors 和 harvesters.这两个组件协同工作将文件变动发送到指定的输出中. Harvester(收割机):负责读取 ...
- mysql8 安装笔记
环境 redhat6.8 ,官网下载 rpm x64 Bund 安装包 安装 rpm -ivh xxx.rpm 安装一系列的rpm. mysql 会创建 mysql 用户及组./etc/my.cnf ...
- vue脚手架搭建移动端项目--flexible.js
通过命令行 node -v 查看是否安装node环境 在 nodejs 和 webpack已安装的前提下,随便一个文件夹下,输入命令行 npm install vue-cli -g 安装完成后,通过 ...