试引进新的未知函数, 将 $p$ - 方程组 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p }{\p x}p(\tau)&=F. \eea \eeex$$ 化为守恒律形式的一阶拟线性对称双曲组. 这里假定 $p'(\tau)<0$.

解答: 由于流场是均熵流, 而 $$\bex \rd e=-p\rd \tau. \eex$$ 取 $$\bex W=e+\cfrac{u^2}{2}, \eex$$ 则 $$\bex \cfrac{\p W}{\p t} =-p\cfrac{\p \tau}{\p t} +u\cfrac{\p u}{\p t} =-p\cfrac{\p u}{\p x} +u\cdot\sex{-\cfrac{\p p}{\p x}} =-\cfrac{\p}{\p x}(pu). \eex$$ 由于 $W$ 关于 $\tau,u$ 的 Hessian $$\bex \sex{\ba{cc} -p'(\tau)&0\\ 0&1 \ea} \eex$$ 是正定的, 我们可据定理 1. 1 (书 P 96) 及其证明知, 通过未知函数变换 $$\bex v_0=\cfrac{\p W}{\p \tau}=-p,\quad v_1=\cfrac{\p W}{\p u}=u, \eex$$ 可将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组 $$\bex \cfrac{\p L^0_{v_i}}{\p t}+\cfrac{\p}{\p x}L^1_{v_i}=0,\quad i=0,1, \eex$$ 其中 $$\beex \bea L^0&=-p\tau +u^2-\sex{e+\cfrac{u^2}{2}} =-p\tau -e+\cfrac{u^2}{2},\\ L^1&=(-p)\cdot (-u)+up -pu=pu. \eea \eeex$$ 于是所求为 $$\beex \bea \cfrac{\p }{\p t}[-p'(\tau)\tau]+\cfrac{\p}{\p x}[p'(\tau)u]&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p}{\p x}p(\tau)&=0. \eea \eeex$$

[物理学与PDEs]第2章习题13 将 $p$ - 方程组化为守恒律形式的一阶拟线性对称双曲组的更多相关文章

  1. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  2. [物理学与PDEs]第1章习题13 静磁场的矢势在媒质交界面上的条件

    试讨论对静磁场的矢势, 如何决定其在媒质交界面上的条件. 解答: 由 $\rot{\bf A}={\bf B}$ 知 $$\bex \oint_l {\bf A}\cdot\rd {\bf l} =\ ...

  3. [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程

    试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...

  4. [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程

    试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式. 证明: 注意到 $$\beex \bea \c ...

  5. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  6. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  7. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  8. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  9. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

随机推荐

  1. java 非访问修饰符 final 的用法

    final 修饰符,用来修饰类.方法和变量 final修饰的类不能被继承 举例,String类是final类,不可以被继承: final修饰的方法不能被重写 只是不能重写,也就是不能被子类修改,但是可 ...

  2. Linux文件目录

    简介: Linux 内核最初由芬兰的 Linus Torvalds 开发,后来他组建了团队,Linux 内核由这个团队维护. GNU 组织开发了很多核心软件和基础库,例如 GCC 编译器.C语言标准库 ...

  3. .NET CORE学习笔记系列(2)——依赖注入[4]: 创建一个简易版的DI框架[上篇]

    原文https://www.cnblogs.com/artech/p/net-core-di-04.html 本系列文章旨在剖析.NET Core的依赖注入框架的实现原理,到目前为止我们通过三篇文章从 ...

  4. webpack开发环境和生产环境切换原理

    在package.json中有如下设置: "scripts": {    "dev": "node build/dev-server.js" ...

  5. 1.5 下载和安装VMWare

    搭建虚拟环境一般都有两种方法,一种是系统自带的虚拟机,还有一种是下载VMware,Win8和Win10都自带有虚拟机,但是都不是自动开启的,所以我们必须手动开启. 一.Win10开启虚拟机 在命令行输 ...

  6. WPF防止界面卡死并显示加载中效果

    原文:WPF防止界面卡死并显示加载中效果 网上貌似没有完整的WPF正在加载的例子,所以自己写了一个,希望能帮到有需要的同学 前台: <Window x:Class="WpfApplic ...

  7. sklearn.neural_network.MLPClassifier参数说明

    目录 sklearn.neural_network.MLPClassifier sklearn.neural_network.MLPClassifier MLPClassifier(hidden_la ...

  8. java中内存分配

    java程序运行时内存分配详解  一. 基本概念 每运行一个java程序会产生一个java进程,每个java进程可能包含一个或者多个线程,每一个Java进程对应唯一一个JVM实例,每一个JVM实例唯一 ...

  9. [系统软件]Ubuntu 18.04 LTS 安装 搜狗输入法,谷歌拼音

    1. 讲什么 本文主要讲述在Ubuntu18.04 LTS版本中安装搜狗输入法.谷歌拼音输入法的过程. 2. 为什么讲 1. Ubuntu电脑自带Ibus输入法+拼音/五笔,但是用了一段时间之后发现经 ...

  10. php之swoole安装与基本使用

    扩展安装: 参考GitHub地址 安装: 1. 使用PHP官方的PECL工具安装 (初学者) pecl install swoole 2. 从源码编译安装 (推荐) git clone https:/ ...