题目描述

  在平面上,有 \(n\) 个圆,记为 \(c_1,c_2,\ldots,c_n\) 。我们尝试对这些圆运行这个算法:

  1. 找到这些圆中半径最大的。如果有多个半径最大的圆,选择编号最小的。记为 \(c_i\) 。
  2. 删除 \(c_i\) 及与其有交集的所有圆。两个圆有交集当且仅当平面上存在一个点,这个点同时在这两个圆的圆周上或圆内。(原文直译:如果平面上存在一个点被这两个圆所包含,我们称这两个圆有交集。一个点被一个圆包含,当且仅当它位于圆内或圆周上。)
  3. 重复上面两个步骤直到所有的圆都被删除。

  当 \(c_i\) 被删除时,若循环中第1步选择的圆是 \(c_j\) ,我们说 \(c_i\) 被 \(c_j\) 删除。对于每个圆,求出它是被哪一个圆删除的。

  \(n\leq 300000\)

题解

  貌似不太好枚举每个圆,找出剩下的和这个圆相交的圆。

  那就换一种思路。

  枚举每个圆 \(i\),找出第一个与这个圆相交且是作为最大的圆被删掉的圆。

  前面的作为最大的圆被删掉的圆肯定是两两不相交的,且半径大于圆 \(c_i\)。

  那么我们可以对前面的圆维护扫描线,每个圆和当前的直线 \(x=x_0\) 相交两次,可以用括号表示 。

  而且由于这些圆两两不相交,括号相对次序不会变。

  由于前面的圆半径都比它大,因此和它有交的圆必然经过 \(x=x_i+r_i\) 或 \(x=x_i-r_i\) 或 \(y=y_i-r_i\) 或 \(y=y_i+r_i\)。

  所以我们可以在做扫描线时,查询这四个位置的平衡树上,当前圆的前驱后继。

  但是这道题有很多个询问。

  那就加上一个CDQ分治咯。

  时间复杂度:\(O(n\log^2n)\)

  实际上跑的比 k-d tree 还慢很多倍。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<set>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c,b=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-')
{
c=getchar();
b=1;
}
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return b?-s:s;
}
void put(int x)
{
if(!x)
{
putchar('0');
return;
}
static int c[20];
int t=0;
while(x)
{
c[++t]=x%10;
x/=10;
}
while(t)
putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
const int N=300010;
const int inf=0x7f7f7f7f;
struct circle
{
ll x,y,r;
int id;
}; struct event
{
ll t;
int op;
int v;
event(){}
event(ll a,int b,int c)
{
t=a;
op=b;
v=c;
}
}; int cmp(circle a,circle b)
{
if(a.r!=b.r)
return a.r>b.r;
return a.id<b.id;
} int cmp2(event a,event b)
{
return a.t<b.t;
} int n;
circle a[N];
int ans[N];
int final[N];
int b[N];
int m;
event c[2*N];
set<pii> s; int inter(int x,int y)
{
return (a[x].x-a[y].x)*(a[x].x-a[y].x)+(a[x].y-a[y].y)*(a[x].y-a[y].y)<=(a[x].r+a[y].r)*(a[x].r+a[y].r);
} void solve(int l,int r)
{
if(l==r)
{
if(ans[l]==inf)
{
ans[l]=l;
b[l]=1;
}
return;
}
int mid=(l+r)>>1;
solve(l,mid); m=0;
for(int i=l;i<=mid;i++)
if(b[i])
{
c[++m]=event(3*(a[i].x-a[i].r)-2,1,i);
c[++m]=event(3*(a[i].x+a[i].r),2,i);
}
for(int i=mid+1;i<=r;i++)
{
c[++m]=event(3*(a[i].x-a[i].r)-1,3,i);
c[++m]=event(3*(a[i].x+a[i].r)-1,3,i);
}
sort(c+1,c+m+1,cmp2);
for(int i=1;i<=m;i++)
if(c[i].op==1)
s.insert(pii(a[c[i].v].y,c[i].v));
else if(c[i].op==2)
s.erase(pii(a[c[i].v].y,c[i].v));
else
{
auto it=s.lower_bound(pii(a[c[i].v].y,0));
if(it!=s.end())
{
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
if(it!=s.begin())
{
it--;
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
} m=0;
for(int i=l;i<=mid;i++)
if(b[i])
{
c[++m]=event(3*(a[i].y-a[i].r)-2,1,i);
c[++m]=event(3*(a[i].y+a[i].r),2,i);
}
for(int i=mid+1;i<=r;i++)
{
c[++m]=event(3*(a[i].y-a[i].r)-1,3,i);
c[++m]=event(3*(a[i].y+a[i].r)-1,3,i);
}
sort(c+1,c+m+1,cmp2);
for(int i=1;i<=m;i++)
if(c[i].op==1)
s.insert(pii(a[c[i].v].x,c[i].v));
else if(c[i].op==2)
s.erase(pii(a[c[i].v].x,c[i].v));
else
{
auto it=s.lower_bound(pii(a[c[i].v].x,0));
if(it!=s.end())
{
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
if(it!=s.begin())
{
it--;
int x=it->second;
if(inter(x,c[i].v))
ans[c[i].v]=min(ans[c[i].v],x);
}
} solve(mid+1,r);
} int main()
{
open("circle");
scanf("%d",&n);
ll minx=0x7fffffff,miny=0x7fffffff;
for(int i=1;i<=n;i++)
{
// scanf("%lld%lld%lld",&a[i].x,&a[i].y,&a[i].r);
a[i].x=rd();
a[i].y=rd();
a[i].r=rd();
a[i].id=i;
minx=min(minx,a[i].x);
miny=min(miny,a[i].y);
}
for(int i=1;i<=n;i++)
{
a[i].x=a[i].x-minx+1;
a[i].y=a[i].y-miny+1;
}
sort(a+1,a+n+1,cmp);
memset(ans,0x7f,sizeof ans);
solve(1,n);
for(int i=1;i<=n;i++)
final[a[i].id]=a[ans[i]].id;
for(int i=1;i<=n;i++)
printf("%d ",final[i]);
printf("\n");
return 0;
}

【LOJ2586】【APIO2018】选圆圈 CDQ分治 扫描线 平衡树的更多相关文章

  1. LOJ2586 APIO2018 选圆圈

    考前挣扎 KD树好题! 暴力模拟 通过kd树的结构把子树内的圈圈框起来 然后排个序根据圆心距 <= R1+R2来判断是否有交点 然后随便转个角度就可以保持优越的nlgn啦 卡精度差评 必须写ep ...

  2. 「APIO2018选圆圈」

    「APIO2018选圆圈」 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径 ...

  3. BZOJ 1492 货币兑换 cdq分治或平衡树维护凸包

    题意:链接 方法:cdq分治或平衡树维护凸包 解析: 这道题我拒绝写平衡树的题解,我仅仅想说splay不要写挂,insert边界条件不要忘.del点的时候不要脑抽d错.有想写平衡树的去看140142或 ...

  4. 【BZOJ4285】使者 cdq分治+扫描线+树状数组

    [BZOJ4285]使者 Description 公元 8192 年,人类进入星际大航海时代.在不懈的努力之下,人类占领了宇宙中的 n 个行星,并在这些行星之间修建了 n - 1 条星际航道,使得任意 ...

  5. 【BZOJ1492】【Luogu P4027】 [NOI2007]货币兑换 CDQ分治,平衡树,动态凸包

    斜率在转移顺序下不满足单调性的斜率优化\(DP\),用动态凸包来维护.送命题. 简化版题意:每次在凸包上插入一个点,以及求一条斜率为\(K\)的直线与当前凸包的交点.思路简单实现困难. \(P.s\) ...

  6. BZOJ5465 APIO2018选圆圈(KD-Tree+堆)

    考虑乱搞,用矩形框圆放KD-Tree上,如果当前删除的圆和矩形有交就递归下去删.为防止被卡,将坐标系旋转一定角度即可.注意eps稍微设大一点,最好开上long double. #include< ...

  7. [BZOJ5465][APIO2018]选圆圈(KD-Tree)

    题意:给你n个圆,每次选择半径最大的,将它和与它相交的圆全部删去,输出每个圆是在哪次被删的. KD树模板题.用一个矩形框住这个圆,就可以直接剪枝了.为了防止被卡可以将点旋转一个角度,为了保险还可以多转 ...

  8. [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5838  Solved: 2345[Submit][Sta ...

  9. 【APIO2018】选圆圈(平面分块 | CDQ分治 | KDT)

    Description 给定平面上的 \(n\) 个圆,用三个参数 \((x, y, R)\) 表示圆心坐标和半径. 每次选取最大的一个尚未被删除的圆删除,并同时删除所有与其相切或相交的圆. 最后输出 ...

随机推荐

  1. 从.Net到Java学习第三篇——spring boot+mybatis+mysql

    从.Net到Java学习第一篇——开篇 环境:mysql5.7 新建mysql数据库demo,然后执行如下sql脚本进行数据表创建和数据初始化: -- ------------------------ ...

  2. nodejs+express+mongodb写api接口的简单尝试

    1:启动mongodb服务 我的mongoDB的安装目录:E:\mongoDB\bin,版本:3.4.9 打开cmd  -> e:(进入e盘) -> cd mongoDB/bin(进入mo ...

  3. $符号报not defing 报错

    https://blog.csdn.net/weixin_37969488/article/details/84250833 最近因为工作问题,需要我把别的项目上的一些jsp网页copy到新项目上.放 ...

  4. Vue一个案例引发的递归组件的使用

    今天我们继续使用 Vue 的撸我们的实战项目,只有在实战中我们才会领悟更多,光纸上谈兵然并卵,继上篇我们的<Vue一个案例引发的动态组件与全局事件绑定总结> 之后,今天来聊一聊我们如何在项 ...

  5. Django 如何让ajax的POST方法带上CSRF令牌

    问题 大家知道,在大前端领域,有一种叫做ajax的东东,即“Asynchronous Javascript And XML”(异步 JavaScript 和 XML),它被用来在不刷新页面的情况下,提 ...

  6. 第五周课后作业——热门软件创新分析+附加题1&附加题3

    鉴于我们寝室都热衷于手游,所以本次热门软件创新分析我就来分析一下几款热门的抽卡型手游.   阴阳师(后文简称YYS)——剧情画风唯美,配音引人入胜 作为网易公司研发的一款3D日式和风回合制游戏,YYS ...

  7. 比较器 comparable与comparator用法

    comparable 接口 Comparable<T> 类型参数:T - 可以与此对象进行比较的那些对象的类型 public interface Comparable<T> 此 ...

  8. 3星|《HBO的内容战略》:HBO与美国电视业大事记

    HBO的内容战略 基本是HBO与美国电视业的大事记.从电视的诞生讲起.HBO在1972年首播,1975年做出一个当时惊世骇俗的决定:勇卫星实时向全美发送信号,随即成为覆盖全国的电视台:80年代受到录像 ...

  9. css3新特性合集

    转自:https://www.cnblogs.com/xiaoxie2016/p/5964694.html (若原作者对此转载有疑问,联系删除,谢谢!) animation    IE10 anima ...

  10. 【Python 03】程序设计与Python语言概述

    人生苦短,我用Python. Python在1990年诞生于荷兰,2010年Python2发布最后一版2.7,Python核心团队计划在2020年停止支持 Python2,目前Python3是未来. ...