我的Spark SQL单元测试实践
最近加入一个Spark项目,作为临时的开发人员协助进行开发工作。该项目中不存在测试的概念,开发人员按需求进行编码工作后,直接向生产系统部署,再由需求的提出者在生产系统检验程序运行结果的正确性。在这种原始的工作方式下,产品经理和开发人员总是在生产系统验证自己的需求、代码。可以想见,各种直接交给用户的错误导致了一系列的事故和不信任。为了处理各类线上问题,大家都疲于奔命。当工作进行到后期,每一个相关人都已经意气消沉,常常对工作避之不及。
为了改善局面,我尝试了重构部分代码,将连篇的SQL分散到不同的方法里,并对单个方法构建单元测试。目的是,在编码完成后,首先在本地执行单元测试,以实现:
- 部署到生产系统的代码中无SQL语法错误。
- 将已出现的bug写入测试用例,避免反复出现相同的bug。
- 提前发现一些错误,减少影响到后续环节的问题。
- 通过自动化减少开发和程序问题处理的总时间花费。
- 通过流程和结果的改善,减少开发人员的思维负担,增加与其他相关人的互信。
本文将介绍我的Spark单元测试实践,供大家参考、批评。
本文中的Spark API是PySpark,测试框架为pytest。
对于希望将本文当作单元测试教程使用的读者,本文会假定读者已经准备好了开发和测试所需要的环境。如果没有也没有关系,文末的参考部分会包含一些配置环境相关的链接。
本文链接:https://www.cnblogs.com/hhelibeb/p/10534862.html
原创内容,转载请注明
概念
定义
单元测试是一种测试方法,它的对象是单个程序单元/组件,目的是验证软件的每个组件都符合设计要求。
单元是软件中最小的可测试部分。它通常包含一些输入和单一的输出。
本文中的单元就是python函数(function)。
单元测试通常是程序开发人员的工作。
原则
为了实现单元测试,函数最好符合一个条件,
- 对于相同的输入,函数总有相同的输出。
这要求函数的输出结果不依赖内外部状态。
它的输出结果的确定不应该依赖输入参数外的任何内容,例如,不可以因为本地测试环境中没有相应的数据库就产生“连接数据库异常”导致无法返回结果。如果是类方法的话,也不可以依据一个可能被改变的类属性来决定输出。
同时,函数内部不能存在“副作用”。它不应该改变除了返回结果以外的任何内容,例如,不可以改变全局可变状态。
满足以上条件的函数,可以被称为“纯函数”。
代码实践
下面是数据和程序部分。
数据
假设我们的服务对象是一家水果运销公司,公司在不同城市设有仓库,现有三张表,其中inventory包含水果的总库存数量信息,inventory_ratio包含水果在不同城市的应有比例,
目标是根据总库存数量和比例算出水果在各地的库存,写入到第三张表inventory_city中。三张表的列如下,
1. inventory. Columns: “item”, “qty”.
2. inventory_ratio. Columns: “item”, “city”, “ratio”.
3. inventory_city. Columns: “item”, “city”, “qty”.
第一版代码
用最直接的方式实现这一功能,代码将是,
from pyspark.sql import SparkSession if __name__ == "__main__": spark = SparkSession.builder.appName('TestAPP').enableHiveSupport().getOrCreate() result = spark.sql('''select t1.item, t2.city,
case when t2.ratio is not null then t1.qty * t2.ratio
else t1.qty
end as qty
from v_inventory as t1
left join v_ratio as t2 on t1.item = t2.item ''') result.write.csv(path="somepath/inventory_city", mode="overwrite")
这段代码可以实现计算各城市库存的需求,但测试起来会不太容易。特别是如果未来我们还要在这个程序中增加其他逻辑的话,不同的逻辑混杂在一起后,测试和修改都会变得麻烦。
所以,在下一步,我们要将部分代码封装到一个函数中。
有副作用的函数
创建一个名为get_inventory_city的函数,将代码包含在内,
from pyspark.sql import SparkSession def get_inventory_city(): spark = SparkSession.builder.appName('TestAPP').enableHiveSupport().getOrCreate()
result = spark.sql('''select t1.item, t2.city,
case when t2.ratio is not null then t1.qty * t2.ratio
else t1.qty
end as qty
from v_inventory as t1
left join v_ratio as t2 on t1.item = t2.item ''')
result.write.csv(path="somepath/inventory_city", mode="overwrite") if __name__ == "__main__": get_inventory_city()
显然,这是一个不太易于测试的函数,因为它,
- 没有输入输出参数,不能直接根据给定数据检验运行结果。
- 包含对数据库的读/写,这意味着它要依赖外部数据库。
- 包含对spark session的获取/创建,这和计算库存的逻辑也毫无关系。
我们把这些函数中的多余的东西称为副作用。副作用和函数的核心逻辑纠缠在一起,使单元测试变得困难,也不利于代码的模块化。
我们必须另外管理副作用,只在函数内部保留纯逻辑。
无副作用的函数
按照上文中提到的原则,重新设计函数,可以得到,
from pyspark.sql import SparkSession, DataFrame def get_inventory_city(spark: SparkSession, inventory: DataFrame, ratio: DataFrame): inventory.createOrReplaceTempView('v_inventory')
ratio.createOrReplaceTempView('v_ratio') result = spark.sql('''select t1.item, t2.city,
case when t2.ratio is not null then t1.qty * t2.ratio
else t1.qty
end as qty
from v_inventory as t1
left join v_ratio as t2 on t1.item = t2.item ''') return result if __name__ == "__main__": spark = SparkSession.builder.appName('TestAPP').enableHiveSupport().getOrCreate() inventory = spark.sql('''select * from inventory''')
ratio = spark.sql('''select * from inventory_ratio''') result = get_inventory_city(spark, inventory, ratio) result.write.csv(path="somepath/inventory_city", mode="overwrite")
修改后的函数get_inventory_city有3个输入参数和1个返回参数,函数内部已经不再包含对spark session和数据库表的处理,这意味着对于确定的输入值,它总会输出不变的结果。
这比之前的设计更加理想,因为函数只包含纯逻辑,所以调用者使用它时不会再受到副作用的干扰,这使得函数的可测试性和可组合性得到了提高。
测试代码
创建一个test_data目录,将csv格式的测试数据保存到里面。测试数据的来源可以是手工模拟制作,也可以是生产环境导出。
然后创建测试文件,添加代码,
from inventory import get_inventory_city
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestAPP').enableHiveSupport().getOrCreate() def test_get_inventory_city(): #导入测试数据
inventory = spark.read.format("csv").option("header", "true").load("./test_data/inventory.csv")
ratio = spark.read.format("csv").option("header", "true").load("./test_data/inventory_ratio.csv") #执行函数
result = get_inventory_city(spark, inventory, ratio) #验证拆分后的总数量等于拆分前的总数量
result.createOrReplaceTempView('v_result')
inventory.createOrReplaceTempView('v_inventory') qty_before_split = spark.sql('''select sum(qty) as qty from v_inventory''')
qty_after_split = spark.sql('''select sum(qty) as qty from v_result''') assert qty_before_split.take(1)[0]['qty'] == qty_after_split.take(1)[0]['qty']
执行测试,可以看到以下输出内容
============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-4.3.1, py-1.8.0, pluggy-0.9.0
rootdir: C:\Users\zhaozhe42\PycharmProjects\spark_unit\unit, inifile:collected 1 item
test_get_inventory_city.py .2019-03-21 14:16:24 WARN ObjectStore:568 - Failed to get database global_temp, returning NoSuchObjectException
[100%]
========================= 1 passed in 18.06 seconds ==========================
这样一个单元测试例子就完成了。
相比把程序放到服务器测试,单元测试的运行速度更快,开发者不用再担心测试会对生产作业和用户造成影响,也可以更早发现在编码期间犯下的错误。它也可以成为自动化测试的基础。
待解决的问题
目前我已经可以在项目中构建初步的单元测试,但依然面临着一些问题。
运行时间
上面这个简单的测试示例在我的联想T470笔记本上需要花费18.06秒执行完成,而实际项目中的程序的复杂度要更高,执行时间也更长。执行时间过长一件糟糕的事情,因为单元测试的执行花费越大,就会越被开发者拒斥。面对显示器等待单元测试执行完成的时间是难捱的。虽然相比于把程序丢到生产系统中执行,这种单元测试模式已经可以节约不少时间,但还不够好。
接下来可能会尝试的解决办法:提升电脑配置/改变测试数据的导入方式。
有效范围
在生产实践中构建纯函数是一件不太容易的事情,它对开发者的设计和编码能力有相当的要求。
单元测试虽然能帮助发现一些问题和确定问题代码范围,但它似乎并不能揭示错误的原因。只靠单元测试,不能完全证明代码的正确性。
笔者水平有限,目前写出的代码中仍有很多单元测试力所不能及的地方。可能需要在实践中对它们进行改进,或者引入其它测试手段作为补充。
参考
一些参考内容。
配置
Getting Started with PySpark on Windows
阅读
我的Spark SQL单元测试实践的更多相关文章
- 实验5 Spark SQL编程初级实践
今天做实验[Spark SQL 编程初级实践],虽然网上有答案,但都是用scala语言写的,于是我用java语言重写实现一下. 1 .Spark SQL 基本操作将下列 JSON 格式数据复制到 Li ...
- 【原创 Hadoop&Spark 动手实践 9】Spark SQL 程序设计基础与动手实践(上)
[原创 Hadoop&Spark 动手实践 9]SparkSQL程序设计基础与动手实践(上) 目标: 1. 理解Spark SQL最基础的原理 2. 可以使用Spark SQL完成一些简单的数 ...
- 【原创 Hadoop&Spark 动手实践 10】Spark SQL 程序设计基础与动手实践(下)
[原创 Hadoop&Spark 动手实践 10]Spark SQL 程序设计基础与动手实践(下) 目标: 1. 深入理解Spark SQL 程序设计的原理 2. 通过简单的命令来验证Spar ...
- 实验 5 Spark SQL 编程初级实践
实验 5 Spark SQL 编程初级实践 参考厦门大学林子雨 1. Spark SQL 基本操作 将下列 json 数据复制到你的 ubuntu 系统/usr/local/spark 下,并 ...
- 实验5 Spark SQL 编程初级实践
源文件内容如下(包含 id,name,age),将数据复制保存到 ubuntu 系统/usr/local/spark 下, 命名为 employee.txt,实现从 RDD 转换得到 DataFram ...
- Spark SQL 编程初级实践
一.实验目的 (1) 通过实验掌握 Spark SQL 的基本编程方法: (2) 熟悉 RDD 到 DataFrame 的转化方法: (3) 熟悉利用 Spark ...
- Spark SQL在100TB上的自适应执行实践(转载)
Spark SQL是Apache Spark最广泛使用的一个组件,它提供了非常友好的接口来分布式处理结构化数据,在很多应用领域都有成功的生产实践,但是在超大规模集群和数据集上,Spark SQL仍然遇 ...
- 第五周周二练习:实验 5 Spark SQL 编程初级实践
1.题目: 源码: import java.util.Properties import org.apache.spark.sql.types._ import org.apache.spark.sq ...
- spark实验(五)--Spark SQL 编程初级实践(1)
一.实验目的 (1)通过实验掌握 Spark SQL 的基本编程方法: (2)熟悉 RDD 到 DataFrame 的转化方法: (3)熟悉利用 Spark SQL 管理来自不同数据源的数据. 二.实 ...
随机推荐
- 使用ML.NET实现白葡萄酒品质预测
导读:ML.NET系列文章 本文将基于ML.NET v0.2预览版,介绍机器学习中的分类和回归两个重要概念,并实现白葡萄酒品质预测. 本系列前面的文章也提到了一些,经典的机器学习最主要的特点就是模拟, ...
- php_D3_“简易聊天室 ”实现的关键技术 详解
PHP+MySQL实现Internet上一个简易聊天室的关键技术 系统目标: 聊天室使用数据库汇集每个人的发言,并可将数据库内的发言信息显示在页面,让每个用户都可 ...
- Chapter 5 Blood Type——27
And then Mike staggered through the door, now supporting a sallow-looking Lee Stephens, another boy ...
- mongodb副本集高可用架构
一.简介 Mongodb复制集由一组Mongod实例(进程)组成,包含一个Primary节点和多个Secondary节点. Mongodb Driver(客户端)的所有数据都写入Primary,Sec ...
- SmartSql 更新日志
SmartSql 更新历史记录 3.7.0 support cross SqlMap reference for #30 modifying Statement.Ref for delay depen ...
- [十六]基础类型BigInteger简介
BigInteger和BigDecimal都是Java针对大数提供的类 超出了java的表示范围 属性简介 借助于signum和mag 来实现数据的符号位和实际数据的保存 final in ...
- 域名注册域名解析域名绑定 dns服务器解析 域名记录的添加 记录类型含义@ www 访问域名请求过程
创建一个web应用,简言之就是访问一个域名,可以到达一个地方,这个地方就是你存放供别人查看的文件的地方 就像一条绳,从这头拉一下,可以拉出来另一头的东西 主要有两个部分: 域名 虚拟主机(空间) 1. ...
- jmeter 压测常见的几种报错
一. socket closed 问题原因:在JMeter下,发送http 请求时,一般都是默认选择了use keepAlive,这个是连接协议,JMeter坑就在这里,默认勾选了这个(如果不勾选的话 ...
- .Net语言 APP开发平台——Smobiler学习日志:在应用中添加WeiXin组件
最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 控件说明 WeiXin组件. 效果演示 1. 分享好友 2. 分享朋友圈 图1 图2 ...
- VSTO中Word的查找方式
VSTO中Word的查找方式 前言 使用C#在VSTO开发Word插件的过程,经常需要对文档中的内容进行查找和替换.在Word中进行文本的查找替换,和一般对纯文本的查找替换却不太一样.因为Word文档 ...