Deep Mutual Learning
论文地址: https://arxiv.org/abs/1706.00384
论文简介
该论文探讨了一种与模型蒸馏(model distillation)相关却不同的模型---即相互学习(mutual learning)。 蒸馏从一个强大的大型预训练教师网络开始,并向未经训练的小型学生网络进行单向知识转移。 相反,在相互学习中,我们从一群未经训练的学生网络开始,他们同时学习一起解决任务。 具体来说,每个学生网络都有两个的损失函数:一种传统的监督性损失函数,以及一种模仿性的损失函数(mimicry loss),使每个学生的后验概率分布与其他学生的类别概率保持一致。
通过这种方式进行训练,结果表明,在这种基于同伴教学(peer-teaching)的情景中,每个学生的学习都比在传统的监督学习方案中单独学习要好得多。 此外,以这种方式训练的学生网络比来自更大的预训练教师的传统蒸馏训练的学生网络获得更好的结果。论文实验表明,各种网络架构可以从相互学习中受益,并在CIFAR-100识别和Market-1501 ReID 数据集上获得令人信服的结果。
模型设计

损失函数
| 损失函数 | 函数设计 |
|---|---|
| 传统监督损失函数 | softmax + 交叉熵损失函数 |
| 模仿性的损失函数 | softmax + KL散度函数 |
[两个网络]


[多个网络]

实验结果
实验网络

Cifar-100 实验
[实验设置]
| paras | values |
|---|---|
| optimizer | SGD with Nesterov |
| base lr | 0.1 |
| momentum | 0.9 |
| batch size | 64 |
| epoch | 200 |
| note | The learning rate dropped by 0.1 every 60 epochs |
[实验结果]

[实验结论]
- 与独立学习相比, ResNet-32,MobileNet 和 WRN-28-10各种不同网络都在DML提高了性能。
- 容量较小的网络(ResNet-32和MobileNet)通常可以从DML获取更大的提升。
- 虽然WRN-28-10是一个比MobileNet或ResNet-32大得多的网络,但它仍然受益于与较小的网络一起训练。
- 与独立学习相比,使用DML训练一组大型网络(WRN-28-10)仍然是有益的。 因此,与模式蒸馏的传统智慧相反,我们看到一个大型的预训练的教师网络不是必不可少的.
Market-1501 实验结果
[实验设置]
每个MobileNet相互学习DML都以双网络方式中进行训练,并报告两个网络的平均性能
| paras | values |
|---|---|
| optimizer | Adam |
| β1/β2 | 0.5/0.999 |
| base lr | 0.0002 |
| momentum | 0.9 |
| batch size | 16 |
| iterations | 100,000 |
[实验结果]

[实验结论]
可以看到,与独立学习相比, 无论是否在ImageNet上进行预训练,DML极大地提高了MobileNet的性能。还可以看出,用两个MobileNets训练的所提出的DML方法的性能显着优于先前的最先进的深度学习方法。
与模型蒸馏比较
[实验结果]

[实验结论]
Table4 将DML与模型蒸馏进行了比较,其中教师网络(Net1)经过预先训练,并为学生网络(Net2)提供固定的后验概率目标。
- 正如预期的那样,与独立学习相比,来自强大的预训练教师网络的常规蒸馏方法确实提高了学生网络的表现(Net1蒸馏Net2)
- 与蒸馏相比,DML将两个网络一起训练, 两个网络都得到了改进。这意味着在相互学习的过程中,通过与先验未经训练的学生的互动,教师角色的网络实际上变得比预先训练的教师更好。
相互学习的网络与性能联系
[实验设置]
之前实验研究以2名学生队列为例。在这个实验中,论文研究了DML如何与队列中的更多学生进行互动。图2(a)显示了Market-1501上的结果,其中DML训练增加了MobileNets的群组大小。图中显示了平均mAP以及标准偏差。
[实验结果]

[实验结论]
从图2(a)可以看出,平均单一网络的mAP性能随着DML队列中的网络数量的增加而增加。这表明,与越来越多的同龄人一起学习时,学生的泛化能力得到提高。从标准偏差中我们也可以看到,随着DML网络数量的增加,结果越来越稳定。
训练多个网络时的一种常用技术是将它们组合为一个整体并进行组合预测。在图2(b)中,我们使用与图2(a)相同的模型,但基于整体进行预测, 在整体上(基于所有成员的连锁特征进行匹配)而不是报告每个人的平均预测。从结果我们可以看出,集合预测优于预期的各个网络预测(图2 (b)vs(a).
Deep Mutual Learning的更多相关文章
- 【论文阅读】Deep Mutual Learning
文章:Deep Mutual Learning 出自CVPR2017(18年最佳学生论文) 文章链接:https://arxiv.org/abs/1706.00384 代码链接:https://git ...
- Paper | Deep Mutual Learning
目录 1. 动机详述和方法简介 2. 相关工作 3. 方法 3.1 Formulation 3.2 实现 3.3 弱监督学习 4. 实验 4.1 基本实验 4.2 深入实验 [算法和公式很simple ...
- 论文笔记: Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation
Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http ...
- Deep Residual Learning
最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个. 开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
- Open source packages on Deep Reinforcement Learning
智能车 self driving car + 强化学习 reinforcement learning + 神经网络 模拟 https://github.com/MorvanZhou/my_resear ...
- (转) Deep Reinforcement Learning: Playing a Racing Game
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...
随机推荐
- JS 设计模式六 -- 代理模式
概念 为一个对象提供一个代用品或占位符,以便控制对它的访问. 当客户不方便直接访问一个对象的时候,需要提供一个替身对象来控制对这个对象的访问. 替身对象对请求做出一些处理之后, 再把请求转交给本体对象 ...
- 基于 docker 的yapi(快速部署)
1.使用官方的mongodb镜像 docker run --network yapi_net --ip 172.30.0.10 -d --name yapi_mongodb --restart al ...
- windows 监控
监控time_wait状态tcp/ip连接 > netstat -an | findstr "TIME_WAIT" 如果监控此值发现量比较大,且有类似socketExcept ...
- JS获取浏览器地址栏的多个参数值的任意值
getParamValue("id"); //http://localhost:2426/TransactionNotes.aspx?id=100 //返回值是100: // 根据 ...
- 高斯消元与行列式求值 part1
两道模板题,思路与算法却是相当经典. 先说最开始做的行列式求值,题目大致为给一个10*10的行列式,求其值 具体思路(一开始看到题我的思路): 1.暴算,把每种可能组合试一遍,求逆序数,做相应加减运算 ...
- 用 hugo 和 netlify 搭建blog【转】
用 hugo 和 netlify 搭建blog - kok的笔记本 Releases · gohugoio/hugo · GitHub 测试baidu 测试163
- python多线程中join()方法和setDaemon()方法的区别
""" join()方法:主线程A中,创建了子线程B,并且在主线程中调用了B.join()方法,那么主线程A会在调用的地方等待,直到子线程B完成操作后,才可以接着往下执行 ...
- ACM-ICPC 2018 徐州赛区网络预赛 HRyuji doesn't want to study 树状数组
题目链接:https://nanti.jisuanke.com/t/A2007 题目大意:有一个序列含有n个数a[1],a[2],a[3],……a[n],有两种操作: 第一种操作:k=1,l,r,询问 ...
- 微信, qq 支付宝 等相关开发 资源 记录
手机QQweb开发平台 api : http://open.mobile.qq.com/api/component/share qq 微信 分享 简介 :https://segmentfault. ...
- 内核空间内存申请函数kmalloc kzalloc vmalloc的区别
我们都知道在用户空间动态申请内存用的函数是 malloc(),这个函数在各种操作系统上的使用是一致的,对应的用户空间内存释放函数是 free().注意:动态申请的内存使用完后必须要释放,否则会造成内存 ...