BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html
题目传送门 - BZOJ1951
题意概括
求 GM mod 999911659
M=∑i|nC(n,i)
N,G<=109
题解
我们发现999911659是一个素数,设为p。
费马小定理:对于任意正整数a,和素数p,有
ap-1 Ξ 1 (mod p)
由此可得, GM Ξ GM mod (p-1) (mod p)
这个可以用快速幂搞定,现在的问题就是如何计算M
我们研究p-1这个数。
我们把他分解质因数:
p-1 = 999911658 = 2 × 3 × 4679 × 35617
我们发现他们都很小。而且没有质数的多次方之类的(不然貌似要用到ex_lucas)
我们于是分组解决这个问题。
对于模数为2、3、4679、35617我们分别求解。
设当前的模数为p,那么,我们只需要枚举i(i|n),可以在的复杂度里面得到所有的i,那么现在我们考虑计算C(n,i)。
显然,这个可以套Lucas定理:(设p为当前的素模数)
C(n,m) Ξ C(n mod p,m mod p) × C(n div p,m div p) (mod p)
于是我们可以将n和m的规模在log的复杂度内搞到p以下。然后直接套C函数的公式就可以了(提前预处理出阶乘)。
那么,我们得到了4个答案。
然后我们考虑结合4个答案。
记我们的答案分别为a[0]、a[1]、a[2]、a[3];而之前的四个数为p[0]~p[4]。
我们发现,我们得到的4个答案可以写出等式:
a[i] Ξ M (mod p[i]) (0<=i<4)
这个很明显就是中国剩余定理(CRT)可以搞定的。
而且p[i]都是质数,两两互质,那么就更好办了。
注意,开始的时候要把G=999911659的情况判掉,不然会出错。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
LL mod=999911659;
LL num[4]={2,3,4679,35617};
LL N,G,M,a[4];
LL Pow(LL x,LL y,LL mod){
if (!y)
return 1LL;
LL xx=Pow(x,y/2,mod);
xx=xx*xx%mod;
if (y&1LL)
xx=xx*x%mod;
return xx;
}
LL Inv(LL x,LL mod){
return Pow(x,mod-2,mod);
}
LL fac[4][36000],inv[4][36000];
void Get_fac(){
for (LL x=0;x<4;x++){
fac[x][0]=1;
for (LL i=1;i<num[x];i++)
fac[x][i]=fac[x][i-1]*i%num[x];
}
for (LL x=0;x<4;x++)
for (LL i=0;i<num[x];i++)
inv[x][i]=Inv(fac[x][i],num[x]);
}
LL _C(int i,LL N,LL M){
if (N<M)
return 0;
return fac[i][N]*inv[i][M]%num[i]*inv[i][N-M]%num[i];
}
LL C(int i,LL N,LL M){
if (M==0)
return 1LL;
return _C(i,N%num[i],M%num[i])*C(i,N/num[i],M/num[i])%num[i];
}
void ex_gcd(LL a,LL b,LL &x,LL &y){
if (b==0){
x=1,y=0;
return;
}
ex_gcd(b,a%b,y,x);
y-=(a/b)*x;
}
LL CRT(){
LL x,y,A=num[0],B=a[0];
for (int i=1;i<4;i++){
LL A1=num[i],B1=a[i];
ex_gcd(A,A1,x,y);
x=((B1-B)*x%A1+A1)%A1;
B+=A*x;
A*=A1;
}
return B;
}
int main(){
scanf("%lld%lld",&N,&G);
if (G==mod){
puts("0");
return 0;
}
Get_fac();
for (LL x=0;x<4;x++)
for (LL i=1;i<=(LL)sqrt(N);i++)
if (N%i==0){
int A=i,B=N/i;
if (A!=B)
a[x]=(a[x]+C(x,N,A)+C(x,N,B))%num[x];
else
a[x]=(a[x]+C(x,N,i))%num[x];
}
LL res=CRT();
printf("%lld",Pow(G,res,mod));
return 0;
}
BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论的更多相关文章
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- BZOJ1951[SDOI2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)
https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...
- bzoj1951 [Sdoi2010]古代猪文 ——数论综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
随机推荐
- Light OJ 1148
题意: 给你N 个人, 每个人说出有多少人和他一队, 不包括他自己, 输出总人数最少值 思路: 排个序, 按照给的数目把人分为一组,就可以得出最少人数 #include<bits/stdc++. ...
- CentOS 7安装Python3.5
CentOS 7下安装Python3.5 •安装python3.5可能使用的依赖 yum install openssl-devel bzip2-devel expat-devel gdbm-deve ...
- Oracle的AES加密与解密用法
Oracle的AES加密与解密用法2013年12月11日 11:50:35 iteye_751 阅读数:428--加密字符串create or replace function des3_enc( i ...
- with文件操作
enumeratef = open('lyrics',"r",encoding=""utf-8) #文件句柄"""对文件操作流程 ...
- μCUnit,微控制器的单元测试框架
在MCU on Eclipse网站上看到Erich Styger在8月26日发布的博文,一篇关于微控制器单元测试的文章,有很高的参考价值,特将其翻译过来以备学习.原文网址:https://mcuone ...
- nginx实战(三)之静态资源web服务(跨站访问)
语法 虽然说浏览器禁止跨站访问以防(CSRF),但出于一些原因还是要进行跨站访问,服务端通过设置头信息Access-Control-Allow-Orign:xxxx,客户端收到后就会允许跨站访问了 实 ...
- selenium 获取input输入框中的值的方法
方法一:获取input的文本值 <input class="form-text-normal" id="txtName" name="Name& ...
- AD9361寄存器配置顺序,循环模式,自收自发
:] cmd_data; :] index; begin case(index) 'h000,8'h00};//set spi -- 'h3df,8'h01};//set init -- 'h037, ...
- 【sqli-labs】Less5~Less6
双注入原理: 来源: http://www.myhack58.com/Article/html/3/7/2016/73471.htm (非常详细的说明了原理,good) http://www.2cto ...
- java.text.DateFormat 日期格式化
一: java.text.DateFormat <%@ page language="java" contentType="text/html; charset=u ...