在说Otsu之前,先说几个概念

灰度直方图:将数字图像中的所有像素,按照灰度值的大小,统计其出现的频率。其实就是每个值(0~255)的像素点个数统计。

Otsu算法假设这副图片由前景色和背景色组成,通过最大类间方差选取一个阈值,将前景和背景尽可能分开。

一、代码展示

import cv2
from matplotlib import pyplot as plt
img = cv2.imread('noisy.jpg', 0)
# 固定阈值法
ret1, th1 = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY) # Otsu阈值法
ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 先进行高斯滤波,再使用Otsu阈值法
blur = cv2.GaussianBlur(img, (5, 5), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
images = [img, 0, th1, img, 0, th2, blur, 0, th3]
titles = ['Original', 'Histogram', 'Global(v=100)',
'Original', 'Histogram', "Otsu's",
'Gaussian filtered Image', 'Histogram', "Otsu's"] for i in range(3):
# 绘制原图
plt.subplot(3, 3, i * 3 + 1)
plt.imshow(images[i * 3], 'gray')
plt.title(titles[i * 3], fontsize=8)
plt.xticks([]), plt.yticks([]) # 绘制直方图plt.hist, ravel函数将数组降成一维
plt.subplot(3, 3, i * 3 + 2)
plt.hist(images[i * 3].ravel(), 256)
plt.title(titles[i * 3 + 1], fontsize=8)
plt.xticks([]), plt.yticks([]) # 绘制阈值图
plt.subplot(3, 3, i * 3 + 3)
plt.imshow(images[i * 3 + 2], 'gray')
plt.title(titles[i * 3 + 2], fontsize=8)
plt.xticks([]), plt.yticks([])
plt.show()

可以看出Otsu阈值明显优于固定阈值。

二、Otsu算法推导

Otsu阈值法将整幅图分为前景(目标)和背景,以下是一些符号规定:

  • T: 分割阈值
  • N0:前景像素点数
  • N1:背景像素点数
  • ω0:前景的像素点数占整幅图像的比例
  • ω1:背景的像素点数占整幅图像的比例
  • μ0:前景的平均像素值
  • μ1:背景的平均像素值
  • μ:整幅图的平均像素值
  • rows * cols:图像的行数和列数

总的像素个数:

       N0+N1=rows×cols

ω0和ω1是前景、背景所占的比例,也就是:

整幅图的平均像素值就是:

我们定义一个前景μ0与背景μ1的方差g:

联立前面几个公式得:

g就是前景与背景两类之间的方差,这个值越大,说明前景和背景的差别也就越大,效果越好。Otsu算法便是遍历阈值T,使得g最大。所以又称为最大类间方差法。基本上双峰图片的阈值T在两峰之间的谷底。

参考网址:https://tianchi.aliyun.com/course/courseConsole?courseId=40992&chapterIndex=1&sectionIndex=12

OpenCV-Python入门教程6-Otsu阈值法的更多相关文章

  1. 毫无基础的人入门Python,Python入门教程

    随着人工智能的发展,Python近两年也是大火,越来越多的人加入到Python学习大军,对于毫无基础的人该如何入门Python呢?这里整理了一些个人经验和Python入门教程供大家参考. 如果你是零基 ...

  2. 老鸟的Python入门教程

    转自老鸟的Python入门教程 重要说明 这不是给编程新手准备的教程,如果您入行编程不久,或者还没有使用过1到2门编程语言,请移步!这是有一定编程经验的人准备的.最好是熟知Java或C,懂得命令行,S ...

  3. 2018-06-21 中文代码示例视频演示Python入门教程第五章 数据结构

    知乎原链 续前作: 中文代码示例视频演示Python入门教程第四章 控制流 对应在线文档: 5. Data Structures 这一章起初还是采取了尽量与原例程相近的汉化方式, 但有些语义较偏(如T ...

  4. 2018-06-20 中文代码示例视频演示Python入门教程第四章 控制流

    知乎原链 续前作: 中文代码示例视频演示Python入门教程第三章 简介Python 对应在线文档: 4. More Control Flow Tools 录制中出了不少岔子. 另外, 输入法确实是一 ...

  5. 2018-06-20 中文代码示例视频演示Python入门教程第三章 简介Python

    知乎原链 Python 3.6.5官方入门教程中示例代码汉化后演示 对应在线文档: 3. An Informal Introduction to Python 不知如何合集, 请指教. 中文代码示例P ...

  6. Python入门教程 超详细1小时学会Python

    Python入门教程 超详细1小时学会Python 作者: 字体:[增加 减小] 类型:转载 时间:2006-09-08我要评论 本文适合有经验的程序员尽快进入Python世界.特别地,如果你掌握Ja ...

  7. 极度舒适的 Python 入门教程,小猪佩奇也能学会~

    编程几乎已经成为现代人的一门必修课,特别是 Python ,不仅长期霸占编程趋势榜.薪资榜第一,还屡屡进入小学教材,甚至成为浙江省信息技术高考项目-- 今天,小编带来了一门极度舒适的 Python 入 ...

  8. Python入门教程 超详细1小时学会Python

    Python入门教程 超详细1小时学会Python 本文适合有经验的程序员尽快进入Python世界.特别地,如果你掌握Java和Javascript,不用1小时你就可以用Python快速流畅地写有用的 ...

  9. Python入门教程完整版(懂中文就能学会)

    前几天给大家分享<从零学会Photoshop经典教程300集>的教程受到了广泛的关注,有人不知道怎么领取,居然称小编为"骗子". 不过小编的内心是强大的,网友虐我千百遍 ...

  10. 大爽Python入门教程 1-1 简单的数学运算

    大爽Python入门公开课教案 点击查看教程总目录 1 使用pycharm建立我们的第一个项目 打开pycharm,点击菜单栏,File->New Project 在Location(项目地址) ...

随机推荐

  1. ps遇到的技术问题列表

    1.ps矩形选框显示像素 CTRL+K 进入首选项设置就可以了. 2.ps显示辅助线 页面工具栏上的视图按钮,我们在列表上找到标尺,我们也是可以快捷键选择CtrI+R 3.如何将插入photoshop ...

  2. 如何生成添加前缀的顺序DIV

    今天我们这边的需求是生产类似于 div1 div2 div3 这种的方式. filters: { pre: function (value) { return 'div' + value; } }, ...

  3. vue中原生file上传图片

    效果 视图层 <el-form-item class="file-box" label="微信分享图片url链接" prop="wx_share ...

  4. 鼠标事件event和坐标

    鼠标事件(e=e||window.event) event.clientX.event.clientY 鼠标相对于浏览器窗口可视区域的X,Y坐标(窗口坐标),可视区域不包括工具栏和滚动条.IE事件和标 ...

  5. mysql导入sqlserver数据库表

    原文:https://zhidao.baidu.com/question/1114325744502691499.html 在Navicat for MySQL 管理器中,创建目标数据库(注意:因为是 ...

  6. webstorm加载项目卡死在scanning files to index

    今天用webstorm导入项目时,需要加载node-modules文件夹,导致webstorm非常卡,页面提示scanning files to index... 网上搜到办法,记录下: 说明: 在n ...

  7. 配置percona mysql server 5.7基于gtid主主复制架构

    配置mysql基于gtid主主复制架构 环境: 操作系统 centos7. x86_64 mysql版本:Percona-Server-- 测试环境: node1 10.11.0.210 node2 ...

  8. python学习第40天

    # 多表查询 # 索引的基础理论 + 数据准备

  9. python学习第39天

    # 数据操作 # 增 # 删 # 改 # 查 # 单表查询 # 多表查询

  10. Sql语句之并(UNION)、交(INTERSECT)、差(minus)、除去(EXCEPT)

    UNION 查询选修了180101号或180102号课程或二者都选修了的学生学号.课程号和成绩. (SELECT  学号, 课程号, 成绩 FROM   学习 WHERE   课程号='180101' ...