MapReduce过程<原创>
一、预处理阶段

二、Map阶段
一个Map任务被JobTracker(管家)分配到多个TaskTracker(弟弟)执行,如下图所示,弟弟的map()只负责拆分,虽然map()输出两个相同的键值对,但它并不会对两个重复的键值对进行合并,而且输出的键值对也是无序的,没有按照字母顺序排列。而这些工作都会交给Shuffle(洗牌)阶段去做。

三、Shuffle阶段
Shuffle阶段实际上并不是一个和Map阶段和Reduce阶段独立的阶段,实际上它分为Map端的Shuffle阶段和Reduce端的阶段,为了方便讨论,就把这个两个子阶段放在一起讨论,统称为Shuffle阶段。
(一)Map端的Shuffle阶段
每个map()任务都会被分配一块缓存,对于每个map()的输出数据,不是直接写入磁盘,而是先写入缓存里,当缓存达到一定比例时对它进行溢写操作,将溢写好的数据进行归并(、合并)发送到本地磁盘,并清空该数据占用的缓存,还在执行的map()们可以继续不停地将结果写入缓存。之所以这样设计,是为了减少I/O消耗,节省了时间。
溢写,包括分区(Partiyion)、排序(Sort)、合并(Combine)。溢写过程,是在缓存中完成的。
看过巨佬的博客之后对错误的理解进行了更正:每个分区含有多个不同key值的键值对,而不是一个分区只含有一种key值对应的多个键值对。举例:
1分区: < Hello ,1> <Hello ,1 > <Hadoop ,1 > , 2分区:<World ,1 > <World ,1>
即key值为Hello的键值对全部被分到1分区,其他分区不会存在key值为Hello的键值对,而1分区除了Hello还有多个其他的key值的键值对存在。

合并(Combine)与归并(Merge)的区别:
合并是针对每个分区内部的键值对的操作,而归并是针对磁盘中的多个溢写文件的操作,将多个溢写文件归并成一个大的溢写文件。
对于两个键值对< a ,1 >和< a ,1>,合并的结果是 <a , 2 >:合并实际上就是在map端执行reduce的操作,是为了减少网络传输开销,但是并不是所有的情况都能使用合并操作,可通过调用job.setCombinerClass(MyReduce.class)设置这一操作;
而归并的结果是<a,<1,1>>,合并是不是默认MapReduce的默认操作,归并是默认操作。归并的结果是可以继续合并再作为最终结果发送到本地磁盘作为Reduce的输入的。
(二)Reduce端的Shuffle阶段
1.领取数据
Map端的Shuffle阶段将合并或归并好的数据发送到本地磁盘里。在Map任务开始后,Reduce会不断的通过RPC通信协议来询问JobTracker(管家),Map任务是否已经完成。JobTracker检测到一个Map任务完成后会通知相关的Reduce来领取属于自己的数据。一般系统中会存在多个Map机器,Reduce需要使用多线程同时从多个Map机器领取数据。
2.归并、输出
尽管每个map()都在之前进行过合并、归并处理,但当Reduce从多个Map机器中领取回数据后,Reduce机器的缓冲中又存在着相同的可以合并的键值对、具有相同key值的键值对也会被归并。在这个阶段,合并也不是默认的,需要用户自定义。和Map端的Shuffle阶段不同的是,当前阶段生成多个文件发送给Reduce阶段。
三、Reduce阶段
对不同分区的相同key对应的值进行相加,输出最后的结果。并写入到HDFS系统中,也就是写入磁盘。
一定要看:
巨佬博客(一看就懂系列):https://www.cnblogs.com/npumenglei/p/3631244.html
MapReduce过程<原创>的更多相关文章
- MapReduce过程(包括Shuffle)详解
首先,map的输入数据默认一个一个的键值对,键就是每一行首字母的偏移量,值就是每一行的值了. 然后每一个输入的键值对都会用我们定义的map函数去处理,这里用wordcount来举例的话就是,每一个键值 ...
- MapReduce过程详解(基于hadoop2.x架构)
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapredu ...
- Hadoop - MapReduce 过程
Hadoop - MapReduce 一.MapReduce设计理念 map--->映射 reduce--->归纳 mapreduce必须构建在hdfs之上的一种大数据离线计算框架 在线: ...
- MapReduce 过程详解
Hadoop 越来越火, 围绕Hadoop的子项目更是增长迅速, 光Apache官网上列出来的就十几个, 但是万变不离其宗, 大部分项目都是基于Hadoop common MapReduce 更是核心 ...
- WordCount示例深度学习MapReduce过程(1)
我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,Wou ...
- 关于mapreduce过程中出现的错误:Too many fetch-failures
Reduce task启动后第一个阶段是shuffle,即向map端fetch数据.每次fetch都可能因为connect超时,read超时,checksum错误等原因而失败.Reduce task为 ...
- hadoop的mapreduce过程
http://www.cnblogs.com/sharpxiajun/p/3151395.html 下面我从逻辑实体的角度讲解mapreduce运行机制,这些按照时间顺序包括:输入分片(input s ...
- MapReduce过程详解及其性能优化
http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段包括: 第一读数 ...
- WordCount示例深度学习MapReduce过程
转自: http://blog.csdn.net/yczws1/article/details/21794873 . 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测 ...
随机推荐
- Python: datetime 转换
Directive Meaning Example Notes %a Weekday as locale’s abbreviated name. Sun, Mon, …, Sat (en_US); S ...
- php学习----什么是常量
PHP-什么是常量 1.什么是常量?常量可以理解为值不变的量(如圆周率):或者是常量值被定义后,在脚本的其他任何地方都不可以被改变.PHP中的常量分为自定义常量和系统常量(后续小节会详细介绍). 2. ...
- 异常--finally关键字
finally定义: finally{}代码块中的代码是一定会执行的,一般用来关闭资源或者一些必须执行的代码,如数据库连接的关闭
- Day 1 For Knowledge Management
Hi, There: This is my first day to use CNblogs as my personal knowledge management on internet. I wa ...
- servlet温习
servlet是Javaweb的核心,它实质上就是运行在服务器端的Java代码 1.简介 servlet是运行在服务器端的小程序,是sun公司提供的一套规范(接口),用来处理用户的请求,响应给浏览器的 ...
- JavaScript getFullYear() 方法
JavaScript Date 对象 定义和用法 getFullYear() 方法可返回一个表示年份的 4 位数字. 语法 dateObject.getFullYear() 返回值 当 dateObj ...
- call和apply;this;闭包
对于这两个原生JS的方法,一直有点绕不过来,朦朦胧胧的感觉.现在详细梳理一下: 两者是基于继承的思想, obj.call(thisObj, arg1, arg2, ...); obj.apply(th ...
- [NOI2017]蔬菜
[NOI2017]蔬菜 题目描述 大意就是有\(n\)种物品,第\(i\)个物品有\(c_i\)个,单价是\(a_i\).然后每天你可以卖出最多\(m\)个物品.每天结束后第\(i\)种物品会减少\( ...
- 生成对抗网络(GAN)
GAN的全称是 Generative Adversarial Networks,中文名称是生成对抗网络.原始的GAN是一种无监督学习方法,巧妙的利用“博弈”的思想来学习生成式模型. 1 GAN的原理 ...
- python入门学习:5.字典
python入门学习:5.字典 关键点:字典 5.1 使用字典5.2 遍历字典5.3 嵌套 5.1 使用字典 在python中字典是一系列键-值对.每个键都和一个值关联,你可以使用键来访问与之相关 ...