「TJOI2015」线性代数 解题报告
「TJOI2015」线性代数
和牛客某题很像
在和里面有\(B_{i,j}\)要求是\(A_i,A_j\)都为\(1\),和里面减去\(C_i\)要求\(A_i\)为\(1\),然后先把贡献也就是\(B_{i,j}\)加上,然后建图跑最小割,建图方法和牛客那题一样
另外1e6条边为什么也可以跑过去啊,还很快..
Code:
#include <cstdio>
#include <cctype>
#include <cstring>
const int N=510;
const int M=1002000;
int min(int x,int y){return x<y?x:y;}
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
int head[N],to[M],Next[M],edge[M],cnt=1;
void add(int u,int v,int w)
{
to[++cnt]=v,edge[cnt]=w,Next[cnt]=head[u],head[u]=cnt;
to[++cnt]=u,edge[cnt]=0,Next[cnt]=head[v],head[v]=cnt;
}
int q[N],l,r,dep[N],s,t,A[N];
bool bfs()
{
memset(dep,0,sizeof dep);
dep[q[l=r=1]=s]=1;
while(l<=r)
{
int now=q[l++];
for(int v,i=head[now];i;i=Next[i])
if(edge[i]&&!dep[v=to[i]])
{
dep[v]=dep[now]+1;
if((q[++r]=v)==t) return true;
}
}
return false;
}
const int inf=0x3f3f3f3f;
int dfs(int now,int flow)
{
if(now==t) return flow;
int res=flow,yuu;
for(int v,i=head[now];i&&res;i=Next[i])
if(edge[i]&&dep[v=to[i]]==dep[now]+1)
{
yuu=dfs(v,min(res,edge[i]));
if(!yuu){dep[v]=0;continue;}
edge[i]-=yuu,edge[i^1]+=yuu;
res-=yuu;
}
return flow-res;
}
int main()
{
int ans=0,n;
read(n);
s=n+1,t=s+1;
for(int a,i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
read(a);
A[i]+=a;
ans+=a;
if(i!=j) add(j,i,a);
}
for(int a,i=1;i<=n;i++)
{
read(a);
add(s,i,A[i]);
add(i,t,a);
}
int flow;
while(bfs()) while(flow=dfs(s,inf)) ans-=flow;
printf("%d\n",ans);
return 0;
}
2019.2.24
「TJOI2015」线性代数 解题报告的更多相关文章
- 「TJOI2015」概率论 解题报告
「TJOI2015」概率论 令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数 然后列一个dp \[ f_i=\sum_{j=0}^{i-1} f_j f_{i-j ...
- 「TJOI2015」旅游 解题报告
「TJOI2015」旅游 LCT沙比题 考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\) 每次直接拿左右子树更新一下就可以了 写的时候把两个方向都维护一下, ...
- 「TJOI2015」组合数学 解题报告
「TJOI2015」组合数学 这不是个贪心吗? 怎么都最小链覆盖=最大点独立集去了 注意到一个点出度最多只有2,可以贪心一下出度的去向 按读入顺序处理就可以,维护一个\(res_i\)数组,表示上一行 ...
- 「ZJOI2016」旅行者 解题报告
「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...
- 「HNOI2016」树 解题报告
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...
- 「HNOI2016」序列 解题报告
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
- 「HAOI2018」染色 解题报告
「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...
- 「HNOI2016」最小公倍数 解题报告
「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...
随机推荐
- 多线程系列之六:Producer-Consumer模式
一,Producer-Consumer模式 Producer:生产者的意思,指的是生成数据的线程.Consumer:消费者的意思,指的是使用数据的线程当生产者和消费者以不同的线程运行时,两者之间的处理 ...
- 学习yii2.0——事件
参考:https://www.yiichina.com/doc/guide/2.0/concept-events 事件 yii框架中的事件定义和JavaScript中的事件定义差不多:为某个事件绑定一 ...
- 中国科学技术大学统一身份认证系统CAS
CAS | Apereohttps://www.apereo.org/projects/cas 中国科学技术大学统一身份认证系统https://passport.ustc.edu.cn/login?s ...
- vue单页面模板说明文档(2)
Linter Configuration This boilerplate uses ESLint as the linter, and uses the Standard preset with s ...
- 使用cmd命令删除文件夹下所有文件
rmdir 删除整个目录 好比说我要删除 222 这个目录下的所有目录和档案,这语法就是: rmdir /s/q 222 其中: /s 是代表删除所有子目录跟其中的档案. /q 是不要它在删除档案或目 ...
- Lodop文本项相对于文本框居中 两端对齐
Lodop中ADD_PRINT_TEXT默认内容是相对于文本框居左的,如果想要设置相对于文本框居中,可用如下语句.还有一种是两端对齐,可以让内容的两端阿和文本框的最左和最右端对齐,文本项内容布满文本框 ...
- HTML 中的 href\src\url
1. 2. -------from Stack Overflow <a><link>使用 href; <img><script>使用 src;
- Web API2 使用EF Code Migrations to Seed DB
console Enable-Migrations 运行这个命令,添加一个文件夹Migrations,Configuration.cs在这文件夹中 打开 Configuration.cs file. ...
- Linux命令归纳
Linux基本命令 Linux Xshell远程连接 ssh 用户名@id地址 例如: ssh root@192.168.11.53 增加类指令 创建文件夹 mkdir 文件名 mkdir -p 路径 ...
- #186 path(容斥原理+状压dp+NTT)
首先只有一份图时显然可以状压dp,即f[S][i]表示S子集的哈密顿路以i为终点的方案数,枚举下个点转移. 考虑容斥,我们枚举至少有多少条原图中存在的边(即不合法边)被选进了哈密顿路,统计出这个情况下 ...