[转]Kaldi命令词识别
转自:
http://www.jianshu.com/p/5b19605792ab?utm_campaign=maleskine&utm_content=note&utm_medium=pc_all_hots&utm_source=recommendation
http://www.jianshu.com/p/6338fab6bd0a
刚刚拿到一个简单语料库练手,发现只有语音和对应文字, 这篇文章记录了从数据预处理到kaldi对数据进行训练和测试的全过程,这里首先训练单音节模型,其他模型后面再补充。 语料库处理 task : 观察语料库 语料库主要用于命令词识别,包括200个词汇,2000条语音,10个说话者分别对200个词汇进行录音。语音目录以说话者id标识: $ tree -d
├── speaker001
├── speaker002
├── speaker003
├── speaker004
├── speaker005
├── speaker006
├── speaker007
├── speaker008
├── speaker009
├── speaker010
└── Levoice.list
每个说话者文件夹目录下包含对应的200条语音: └┤ tree speaker001
speaker001
├── .wav
├── .wav
├── .wav
...
└── .wav
语音文字说明文件Levoice.list 格式为<语音id> <文字> <录音时长>,例如: └┤ head -n Levoice.list
speaker001/.wav 三六零通讯录 5.6
speaker001/.wav 三六五日历 2.8
语料库所给的资源应用到kaldi还需要汉字发音词典,这里只能自己准备,下面会参考thchs30语料库的词典准备自己的词典。 task : 预处理语料库 为方便后续操作,需要对语料库文件进行预处理,这部分包括: 重新重命名语音文件,使2000个语音文件具有唯一标识(speakerid_voiceid.wav)
划分训练、测试、验证数据集
根据Levoice.list生成utt2words.txt ,进行文件名对应汉字映射。
上述过程脚本(注意rname命令在Ubuntu和Centos中有细微差别): !/bin/bash #if need cv or not
needcv=true # rename wav files by add prefix by "speaker"
start_path=`pwd`
for dirname in $(ls | grep "speaker")
do
#get first filename
filename=$(ls $dirname | head -n )
if [[ $filename =~ "speaker" ]]; then
echo "files in $dirname have already renamed, passing..."
else
echo "now rename flies with prefix speakers"
echo $dirname
cd $dirname
#in centos rename
rename "" $dirname"_00" ""*
# ubuntu using follows
#rename "s/00/$dirname""_00/" *
cd ..
fi
done # devide file to train, cv and test
cd $start_path
rm -rf test train cv && mkdir test train cv i=
for dirname in $(ls | grep "speaker")
do
if [ $i -lt ];then
cp $dirname/* train
else
cp $dirname/* test
fi
let i=$i+1 done function rand(){
min=$1
max=$(($2-$min+1))
num=$(($RANDOM+1000000000))
echo $(($num%$max+$min))
} count=0
array=("0" "0" "0" "0")
#ls -al train
if [ needcv ]; then
for file in $(ls train | grep "speak")
do
array[$count]=$file
let count=$count+1
if [ $count -eq 4 ];then
rnd=$(rand 0 3)
mv train/${array[$rnd]} cv
#echo ${array[$rnd]}
let count=0
fi
done
echo "cv files prepared over, examples number is $(ls cv | wc -l)"
fi
echo "train files number is $(ls train | wc -l)"
echo "test files number is $(ls test | wc -l)"
语料库对训练集、验证集、测试集参考thchs30,这里将说话人9、10语音作为测试集,再从1-8语音集中的1600百条语音文件四条语音为组随机选择一条语音归入验证集,剩下的作为训练集。划分结果训练集、验证集、测试集比例6:2:2。 在语料库目录运行上脚本,会在该目录下产生trian、test和cv目录,这些目录及文件将被后面使用。 最后直接将Levoice.list中的信息进行简单字符替换即可: speaker001/00001.wav 三六零通讯录 5.6
---->
speaker001_00001.wav 三六零通讯录 5.6
可以在vi或其他编辑器中替换即可。 应用Kaldi task0 : 构建kaldi项目结构 参照其他项目,首先复制创建项目结构目录,配置文件以及项目需要使用的依赖工具,这里多参考thchs30部分结构。在egs 目录下建立/wakeup/s5作为项目目录,在该目录下准备以下文件: $ tree -L 1
|-- cmd.sh // 运行配置目录
|-- conf // 配置文件目录
|-- local //存放run.sh 中调用的脚本工具,需要自己编写
|-- path.sh //Kaldi 工具和库目录添加到PATH
|-- run.sh // top层脚本,运行该脚本训练数据和测试, 需要自己编写
|-- steps // kaldi 脚本工具, 复制到工程目录下
|-- tools // kaldi 脚本工具, 复制到工程目录下
`-- utils // kaldi 脚本工具, 复制到工程目录下
这里cmd.sh里根据自己运行方式配置运行参数,这里配置成单机运行 export train_cmd=run.pl
export decode_cmd="run.pl --mem 4G"
export mkgraph_cmd="run.pl --mem 8G"
conf 目录包含一些配置文件,这里主要将系统采样频率与语料库的采样频率设置为一致: $ ls
decode_dnn.config fbank.conf mfcc.conf
$ more mfcc.conf
--use-energy=false # only non-default option.
--sample-frequency=8000
$ more decode_dnn.config
beam=18.0 # beam for decoding. Was 13.0 in the scripts.
lattice_beam=10.0 # this has most effect on size of the lattices.
$ more fbank.conf
--sample-frequency=8000
--num-mel-bins=40
task1 : 准备训练文件 参照kaldi数据准备部分文档,该部分需要自己根据语料库分别就train,test,cross validation目录生成以下文件: text : < uttid > < word >
wav.scp : < uttid > < utter_file_path >
utt2spk : < uttid > < speakid >
spk2utt : < speakid > < uttid >
word.txt : 同 text
编写local/data_pre.sh脚本供run.sh调用(下面会涉及run.sh脚本的编写),传入参数运行目录以及语料库目录: #!/bin/bash
# 2017-3-23 by zqh # This file prepares files needed in kaldi
# including text, wav.scp, utt2spk, spk2utt
# output:
# data/train dir include infomation of train data
# data/test dir include infomation of test data
# data/cv dir include infomation of cross validation data run_dir=$1
dataset_dir=$2 cd $run_dir
echo "prepare data in data/{train, test, cv}"
mkdir -p data/{train,test,cv} #create text, wav.scp, utt2spk, spk2utt
(
i=0
for dir in train cv test; do
echo "clean dir data/$dir"
cd $run_dir/data/$dir
rm -rf wav.scp utt2spk spk2utt word.txt text
#phone.txt
for data in $(find $dataset_dir/$dir/*.wav | sort -u | xargs -i basename {} .wav);do
let i=$i+1
spkid=$(echo $data | awk -F"_" '{print "" $1}')
uttid=$data
echo $uttid $dataset_dir/$dir/$data.wav >> wav.scp
echo $uttid $spkid >> utt2spk
# gen word.txt
echo $uttid $(cat $dataset_dir/utt2word.txt | grep $uttid | awk '{print "" $2}') >> word.txt
# gen phone.txt TODO
done
cp word.txt text
sort wav.scp -o wav.scp
sort utt2spk -o utt2spk
sort text -o text
# sort phone.txt -o phone.txt
done
echo "all file number is $i"
) || exit 1 utils/utt2spk_to_spk2utt.pl data/train/utt2spk > data/train/spk2utt
utils/utt2spk_to_spk2utt.pl data/cv/utt2spk > data/cv/spk2utt
utils/utt2spk_to_spk2utt.pl data/test/utt2spk > data/test/spk2utt
task2 : 训练语言模型 由于这里仅仅需要对语料库中的200个命令词进行识别,大而全的汉语词典并不必要,这里需要根据自己的语料建立词典并且生成语言模型。 task 2.1 : 准备词典 根据kaldi的要求,需要准备的词典包括以下文件(我这里和语料库放在同个目录下,后面kaldi从该目录下读取): [username@hostname dict]$ pwd
/home/username/dataset_wakeup/resource/dict
[username@hostname dict]$ ls
extra_questions.txt lexiconp.txt lexicon.txt nonsilence_phones.txt optional_silence.txt silence_phones.txt
对上面文件简单说明: lexicon.txt: 词典,包括语料中涉及的词汇与发音,与单字及其发音。
silence_phones.txt:静音标识,这里为sil。
nonsilence_phones.txt : 非静音标识,与silence_phones.txt共同组成lexicon.txt中的发音。
extra_questions.txt : 包含重音音调标记,这里没有用到
lexiconp.txt : 如果一个词有不同发音,则会在不同行中出现多次。如果你想使用发音概率,你需要建立 exiconp.txt 而不是 lexicon.txt,这里未使用
以上文件可以参考复制thchs30的resource资源,只要替换lexicon.txt为自己的字典,并且追加thchs30中lexicon.txt中所有的单字及其发音(简单awk命令即可)。此外该语料库仅仅提供了汉字无对应发音,需要自己参考thchs30中的词典准备,(心想只有200条,觉得手打的会很快,事实用了2-3个小时,心累,回头想可以写程序完成)。
lexicon.txt 文件内容大致为: $ more lexicon.txt
SIL sil
<SPOKEN_NOISE> sil
三六零通讯录 s an1 l iu4 l ing2 t ong1 x vn4 l u4
三六五日历 s an1 l iu4 uu u3 r iz4 l i4
三D图库 s an1 d i4 t u2 k u4
task 2.2: 生成语言模型 语言模型训练需要使用n-gram算法,借助sirlm工具可以简单实现,并进行语言模型生成: 安装 下载sirlm安装包(官网下载速慢,也可通过在github上找到相应资源下载),解压后进入最上层目录进行安装。
export SRILM=pwd
make
把$make_dir/bin/i686-m64/加入PATH以便使用其中脚本
生成语言模型 在语料库目录下创建lm_word文件夹(方便管理),复制上面的字典lexicon.txt,并删除前两行,保存为作为words.txt作语料输入文件进行n-gram语言模型生成(由于只是词汇识别设置n=1): ngram-count -order 1 -text words.txt -lm word.arpa
其他参数可以参考: -order 指定n-gram的n是多少,默认是3
-text 提供输入的语料文件,统计该语料中的n-gram
-lm 指定输出的lm文件
-vocab 用来指定对哪些词进行n-gram统计
-wbdiscount1 表示1gram Witten-Bell discounting
Note:参数顺序无所谓
该命令生成arpa格式的语言模型文件,后面由kaldi的其他工具转换为FST格式使用。 完成语言模型的生成后,对应的可以在run.sh脚本中利用该部分的语言模型,通过kaldi提供的工具构建语言模型的FST格式文件,这部分 主要创建了data/{dict,lang,graph}目录及相应文件,并在后面的构建解码图的过程中使用。run.sh脚本该部分代码: #gen lang dir
(
echo "create new dir data/dict,lang,graph"
cd $run_path
mkdir -p data/{dict,lang,graph} && \
cp $dataset//resource/dict/{extra_questions.txt,nonsilence_phones.txt,optional_silence.txt,silence_phones.txt} data/dict && \
cat $dataset/resource/dict/lexicon.txt | \
grep -v '<s>' | grep -v '</s>' | sort -u > data/dict/lexicon.txt || exit 1;
utils/prepare_lang.sh --position_dependent_phones false data/dict "<SPOKEN_NOISE>" data/local/lang data/lang || exit 1;
gzip -c $dataset/King-ASR-M-005/lm_word/word.arpa > data/graph/word.arpa.gz || exit 1;
utils/format_lm.sh data/lang data/graph/word.arpa.gz $dataset/King-ASR-M-005/lm_word/lexicon.txt data/graph/lang || exit 1;
)
这里主要包括utils/prepare_lang.sh 、 和utils/format_lm.sh 两个脚本的调用,不作具体分析。 作者:zqh_zy
链接:http://www.jianshu.com/p/5b19605792ab
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
task4 : 特征提取(FMCC) 完成了语言模型的构建,下面开始生成声学模型部分,首先对语音文件进行特征提取,这里用到了上面准备的文件,包括:text, wav.scp, utt2spk, spk2utt 。
run.sh中完成特征提取,并对语音进行归一化处理: #gen MFCC features
rm -rf data/mfcc && mkdir -p data/mfcc && cp -R data/{train,cv,test} data/mfcc || exit ;
for x in train cv test; do
#make mfcc
steps/make_mfcc.sh --nj $n --cmd "$train_cmd" data/mfcc/$x exp/make_mfcc/$x mfcc/$x || exit ;
#compute cmvn
steps/compute_cmvn_stats.sh data/mfcc/$x exp/mfcc_cmvn/$x mfcc/$x || exit ;
done
生成的特征提取相关文件保存在data/mfcc目录下,真实的数据保存在mfcc/目录下。 task5 : 训练声学模型、 构建解码图 该部分调用kaldi脚本,训练单音节模型,后面测试证明,单个词汇的识别,该模型同样能保证良好的识别效果,同样run.sh脚本中: #monophone
#steps/train_mono.sh --boost-silence 1.25 --nj $n --cmd "$train_cmd" data/mfcc/train data/lang exp/mono || exit ;
声学模型的训练结果文件保存在exp/mono目录下。下面构建解码图,这部分调用utils/mkgraph.sh, 利用先前创建的语言模型和上步训练的声学模型构建HCLG解码图,该部分生成的解码图保存在exp/mono/graph_word文件夹下: utils/mkgraph.sh --mono --nj $n data/graph/lang exp/mono exp/mono/graph_word || exit ;
task6: 测试 在local目录下创建data_decode.sh 脚本对解码步骤进行封装: #!/bin/bash
#decoding wrapper
#run from ../
nj=
mono=false
. ./cmd.sh ## You'll want to change cmd.sh to something that will work on your system.
. ./path.sh ## Source the tools/utils (import the queue.pl)
. utils/parse_options.sh || exit ; decoder=$
srcdir=$
datadir=$ if [ $mono = true ];then
echo "using monophone to generate graph"
opt="--mono"
fi #decode word
$decoder --cmd "$decode_cmd" $srcdir/graph_word $datadir/test $srcdir/decode_test_word || exit
在run.sh脚本中调用上脚本: #test mono model
local/data_decode.sh --nj "steps/decode.sh" exp/mono data/mfcc &
这里注意由于测试集只有两个说话者,并发度设置为2,否则会出现文件分割数与并发数不匹配的情况,解码过程主要用到特征提取后的test文件,上部分生成的解码图,测试结果在exp/mono/decode_test_word文件夹中查看。 为了对测试结果进行评估,还需在local目录下完成打分脚本相关的代码,这里参考thchs30,拷贝文件:score.sh、wer_output_filter 。 下面给出完整的run.sh脚本,之后运行脚本: #!/bin/bash . ./cmd.sh
. ./path.sh run_path=`pwd`
n= #parallel jobs #dataset path
dataset=~/dataset_wakeup #data prepare
#gen text, wav.scp, utt2spk, spk2utt
local/data_prep.sh $run_path $dataset/King-ASR-M- || exit #gen lang dir
(
echo "create new dir data/dict,lang,graph"
cd $run_path
mkdir -p data/{dict,lang,graph} && \
cp $dataset//resource/dict/{extra_questions.txt,nonsilence_phones.txt,optional_silence.txt,silence_phones.txt} data/dict && \
cat $dataset/resource/dict/lexicon.txt | \
grep -v '<s>' | grep -v '</s>' | sort -u > data/dict/lexicon.txt || exit ;
utils/prepare_lang.sh --position_dependent_phones false data/dict "<SPOKEN_NOISE>" data/local/lang data/lang || exit ;
gzip -c $dataset/King-ASR-M-/lm_word/word.arpa > data/graph/word.arpa.gz || exit ;
utils/format_lm.sh data/lang data/graph/word.arpa.gz $dataset/King-ASR-M-/lm_word/lexicon.txt data/graph/lang || exit ;
) #gen MFCC features
rm -rf data/mfcc && mkdir -p data/mfcc && cp -R data/{train,cv,test} data/mfcc || exit ;
for x in train cv test; do
#make mfcc
steps/make_mfcc.sh --nj $n --cmd "$train_cmd" data/mfcc/$x exp/make_mfcc/$x mfcc/$x || exit ;
#compute cmvn
steps/compute_cmvn_stats.sh data/mfcc/$x exp/mfcc_cmvn/$x mfcc/$x || exit ;
done #monophone
steps/train_mono.sh --boost-silence 1.25 --nj $n --cmd "$train_cmd" data/mfcc/train data/lang exp/mono || exit ;
#decode word # make decoder graph
utils/mkgraph.sh --mono data/graph/lang exp/mono exp/mono/graph_word || exit ; #test mono model
local/data_decode.sh --nj "steps/decode.sh" exp/mono data/mfcc &
运行脚本,由于数据量不大,并不需要很长时间,运行测试结束查看效果: [uesrname@hostname scoring_kaldi]$ ls
best_wer log penalty_0. penalty_0. penalty_1. test_filt.txt wer_details
[uesrname@hostname scoring_kaldi]$ more best_wer
%WER 5.57 [ / , ins, del, sub ] exp/mono/decode_test_word/wer_17_1.
错词率为5.%,在penalty_1.0中可以查看最好的识别结果。 小结 文章记录了从拿到语料库,到应用Kaldi的全过程,主要想对流程进行总结,对语音识别相关的原理没有涉及太多。另外这里仅仅训练了单音节模型,其他模型可以参照thchs30完成,这里不再补充。
过程中遇到的小问题很多,一个比较典型的,一开始想偷懒直接使用thchs30的词典,后来识别结果很差,单词均为一个或两个毫不相干的字。考虑自己语料库中的词汇在thchs30的词典中并未涉及,还是通过自己标注词典解决问题。 作者:zqh_zy
链接:http://www.jianshu.com/p/6338fab6bd0a
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
[转]Kaldi命令词识别的更多相关文章
- 如何用kaldi做孤立词识别-初版
---------------------------------------------------------------------------------------------------- ...
- 机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)
最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量.观察变量和实际问题中变量的对应关系, ...
- 基于HTK语音工具包进行孤立词识别的使用教程
选自:http://my.oschina.net/jamesju/blog/116151 1前言 最近一直在研究HTK语音识别工具包,前几天完成了工具包的安装编译和测试,这几天又按耐不住好奇,决定自己 ...
- Shell出现cd命令无法识别
出现cd 等命令无法识别的原因可能是: 当前文件实在windows环境下编辑的其换行结尾是 \r\n 和linux环境的 \n 不一致导致错误, 最好在linux系统上通过 VI 命令新建文件,然后通 ...
- CRF技能词识别过程
最近在用CRF做未登录技能词识别,虽然艰难,但是感觉很爽,效率非常高. (1)数据准备: 选取30000行精语料作为训练数据.每一个br作为一条数据.使用已有的技能词典对数据进行无标注分词. (2)训 ...
- yesno孤立词识别kaldi脚本
path.sh主要设定路径等 export KALDI_ROOT=`pwd`/../../.. [ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ ...
- 如何用kaldi做孤立词识别三
这次wer由15%下降到0%了,后面跑更多的模型 LOG (apply-cmvn[5.2.124~1396-70748]:main():apply-cmvn.cc:162) Applied cepst ...
- 如何用kaldi做孤立词识别二
基本模型没有变化,主要是调参,配置: %WER 65% 下降到了 15% 后面再继续优化... Graph compilation finish!steps/decode.sh -- ...
- 亲自动手用HTK实现YES NO孤立词识别
很久以前的发在研学论坛的帖子了,再重新整理了一下,希望对新手有用. 完整版链接:http://yun.baidu.com/s/1hapcE 第一步 创建语音文件 录音 命令:HSLab any_nam ...
随机推荐
- Python基础-python流程控制之顺序结构和分支结构(五)
流程控制 流程:计算机执行代码的顺序,就是流程 流程控制:对计算机代码执行顺序的控制,就是流程控制 流程分类:顺序结构.选择结构(分支结构).循环结构 顺序结构 一种代码自上而下执行的结构,是pyth ...
- ListBox设置背景色无效的问题。 listview类似
<Style TargetType="{x:Type ListBoxItem}"> <Setter Property="Template"&g ...
- 通过ssh StrictHostKeyChecking解决自动化git项目问题
SSH 公钥检查是一个重要的安全机制,可以防范中间人劫持等黑客攻击.但是在特定情况下,严格的 SSH 公钥检查会破坏一些依赖 SSH 协议的自动化任务,就需要一种手段能够绕过 SSH 的公钥检查. 首 ...
- docker与虚拟机的区别
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...
- win10+tensorflow+CUDA 心酸采坑之路
最近准备学习机器学习和深度学习,所以入坑Tensorflow,之前一直使用的是Anaconda3的cpu版本的Tensorflow,但是这次作死一直想用GPU版本的,主要是不想浪费我的1080ti,但 ...
- canvas的使用方法
了解canvas:canvas标签是用作图形绘制,但是通过js脚本来实现的,canvas标签其实只是一个容器 ,最终实现绘制功能肯定是通过js脚本实现. 首先肯定要定义一个canvas标签当做容器 & ...
- EasyPR源码剖析(4):车牌定位之Sobel算子定位
一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: ...
- android studio 模拟器不能使用的解决方案
1.安装模拟器的时候 AS提示是 VT -x is disable 进入电脑的 bios 系统设置,怎么进入--> 在开机的时候点击F2(华硕电脑,不同电脑方式不同) --在“configura ...
- Eclispe 错误:找不到或无法加载加载主类
解决办法: Project --> Clean Clean 操作会将该 project 以前的所有编译信息清空,然后默认将所有工程的所有 .java 文件都进行一次编译,这样的话就可以方便的进行 ...
- Solved: RDP Disconnected – Error Code 2825 mremote