传送门

题意:

一个人数数,规则如下:

  1. 确定数数的进制B
  2. 确定一个数数的区间[L, R]
  3. 对于[L, R] 间的每一个数,把该数视为一个字符串,列出该字符串的所有连续子串对应的B进制数的值。
  4. 对所有列出的数求和。

结果用10 进制表示,对20130427取模。


思路:

我不知道为什么要从低位开始向高位处理2333333手动毒瘤

然后肝了好久幸好没有推错不然就自闭了

不过需要多预处理一点东西。

假设现在计算[1,a][1,a][1,a]的答案,aaa一个表示BBB进制数的数组

ssi:ss_i:ssi​:所有不含前导000的iii位数的子串之和。

s1i:s_{1i}:s1i​:所有包含前导000的iii位数的子串之和。

s2i:s_{2i}:s2i​:所有包含前导000的iii位数的前缀串之和。

pwi:pw_i:pwi​:BBB的iii次方。

spwi:spw_i:spwi​:pwpwpw的前缀和。

预处理出上面的信息就可以递推了(注意我是从后往前推的所以很复杂):

设现在在第iii位,我们记fff表示iii~nnn满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的子串之和,pfpfpf表示i+1i+1i+1位推出的fff;

ggg表示满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的个数,pgpgpg表示i+1i+1i+1位推出的ggg;

sss表示满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的前缀串之和,pspsps表示i+1i+1i+1位推出的sss。

然后就可以分第iii位填000,填111~ai−1a_i-1ai​−1,aia_iai​的情况大力转移了,注意特判ai=0a_i=0ai​=0的情况。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
	static char buf[rlen],*ib,*ob;
	(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
	return ib==ob?-1:*ib++;
}
inline int read(){
	int ans=0;
	char ch=gc();
	while(!isdigit(ch))ch=gc();
	while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
	return ans;
}
typedef long long ll;
const int N=1e5+5,mod=20130427;
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
inline void update(int&a,const int&b){a=a+b>=mod?a+b-mod:a+b;}
int B,n,ans=0,a[N],pw[N],spw[N],s1[N],s2[N],ss[N];
inline int calc(int x){return (ll)(x+1)*x/2%mod;}
inline void init(){
	pw[0]=spw[0]=1;
	for(ri i=1;i<=n;++i)pw[i]=mul(pw[i-1],B),spw[i]=add(pw[i],spw[i-1]);
	s1[0]=s2[0]=ss[0]=0;
	for(ri i=1,tmp=calc(B-1);i<=n;++i)s2[i]=add(mul(tmp,mul(pw[i-1],spw[i-1])),mul(s2[i-1],B));
	for(ri i=1,tmp=calc(B-1);i<=n;++i)s1[i]=add(mul(tmp,mul(pw[i-1],spw[i-1])),mul(B,add(s2[i-1],s1[i-1])));
	for(ri i=1;i<=n;++i)ss[i]=add(mul(add(s1[i-1],s2[i-1]),B-1),mul(calc(B-1),mul(pw[i-1],spw[i-1]))),update(ss[i],ss[i-1]);
	update(ans,ss[n-1]);
}
inline void solve(){
	n=read();
	for(ri i=1;i<=n;++i)a[i]=read();
	init();
	for(ri tmp,ps=0,pf=0,pg=1,s,f,g,i=n;i;--i,pf=f,pg=g,ps=s){
		if(!a[i]){f=add(pf,ps),g=pg,s=ps;continue;}
		f=s=0,g=1;
		tmp=mul(a[i]-1,add(s1[n-i],s2[n-i]));
		update(tmp,mul(mul(calc(a[i]-1),spw[n-i]),pw[n-i]));
		update(f,tmp);
		if(i==1)update(ans,tmp);
		g=mul(g,mul(pw[n-i],a[i]-1));
		update(s,mul(mul(calc(a[i]-1),pw[n-i]),spw[n-i]));
		update(s,mul(s2[n-i],a[i]-1));
		update(f,add(s1[n-i],s2[n-i]));
		update(g,pw[n-i]);
		update(s,s2[n-i]);
		tmp=mul(mul(a[i],pg),spw[n-i]);
		update(tmp,pf),update(tmp,ps);
		update(f,tmp);
		if(i==1)update(ans,tmp);
		update(g,pg),update(s,mul(mul(pg,a[i]),spw[n-i])),update(s,ps);
	}
}
inline void Solve(){for(ri i=1,sum=0;i<=n;++i)ans=add(ans,sum=add(mul(sum,B),mul(a[i],i)));}
int main(){
	B=read();
	solve();
	ans=mod-ans;
	Solve();
	solve();
	cout<<ans;
	return 0;
}

2019.03.28 bzoj3326: [Scoi2013]数数(数位dp)的更多相关文章

  1. 2019.03.28 bzoj3322: [Scoi2013]摩托车交易(kruskal重构树+贪心)

    传送门 题意咕咕咕 思路: 先把所有可以列车通的缩成一个点,然后用新图建立kruskalkruskalkruskal重构树. 这样就可以倒着贪心模拟了. 代码: #include<bits/st ...

  2. 2019.03.28 bzoj3325: [Scoi2013]密码(manacher+模拟)

    传送门 题意: 现在有一个nnn个小写字母组成的字符串sss. 然后给你nnn个数aia_iai​,aia_iai​表示以sis_isi​为中心的最长回文串串长. 再给你n−1n-1n−1个数bib_ ...

  3. BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP

    BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺 ...

  4. BZOJ_1026_[SCOI2009]windy数_数位DP

    BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...

  5. [bzoj 1026]windy数(数位DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1026 分析: 简单的数位DP啦 f[i][j]表示数字有i位,最高位的数值为j的windy数总 ...

  6. bzoj 1026 [SCOI2009]windy数(数位DP)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4550  Solved: 2039[Submit][Sta ...

  7. [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】

    题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...

  8. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  9. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

随机推荐

  1. MySQL慢查询日志相关的文件配置和使用。

    MySQL慢查询日志提供了超过指定时间阈值的查询信息,为性能优化提供了主要的参考依据,是一个非常实用的功能,MySQL慢查询日志的开启和配置非常简单,可以指定记录的文件(或者表),超过的时间阈值等就可 ...

  2. 20175213 2018-2019-2 《Java程序设计》第8周学习总结

    教材学习内容总结 1:泛型主要目的是建立具有类型安全的集合框架,如链表,散列映射等数据结构. 泛型类的声明: class People<E> People是泛型类的名称,E是其中泛型,E可 ...

  3. mongodb安装使用简单命令

    .window+x,A,管理员进入cmd.cd C:\Program Files\MongoDB\Server\3.4\bin.安装:mongod --dbpath "D:\work\DB\ ...

  4. mui-H5获取当前手机通讯录

    mui.plusReady(function() { // 扩展API加载完毕,现在可以正常调用扩展API plus.contacts.getAddressBook(plus.contacts.ADD ...

  5. CNN中feature map、卷积核、卷积核个数、filter、channel的概念解释,以及CNN 学习过程中卷积核更新的理解

    具体可以看这篇文章,写的很详细.https://blog.csdn.net/xys430381_1/article/details/82529397

  6. C#使用Spire.Doc Word for .Net读写Word

    以前对Excel或Word文档操作都使用微软的COM组件Microsoft Word 15.0 object library. 但是这种方式必须要求服务器上安装Office,而且会出现读写操作完成后未 ...

  7. 统一集中管理系统cronsun简介,替代crontab

    一.背景 crontab 是 Linux 系统里面最简单易用的定时任务管理工具,相信绝大多数开发和运维都用到过.在咱们公司,很多业务系统的定时任务都是通过 crontab 来定义的,时间长了后会发现存 ...

  8. Python开发【第十一篇】:MySQL

    数据库介绍 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库.每个数据库都有一个或多个不同的API用于创建.访问.管理.搜索和复制所保存的数据.每个数据库都有一个或多个不同的API ...

  9. shell的 ls命令

    Linux下shell 的 ls 命令 ls -d 显示当前目录的上层目录,不显示子目录 ls -a 显示当前目录下的所有子目录,包括隐藏的文件 ls -l 显示当前目录下所有文件的所有信息(除隐藏文 ...

  10. log4j 配置日志输出(log4j.properties)

    轉: https://blog.csdn.net/qq_29166327/article/details/80467593 一.入门log4j实例 1.1 下载解压log4j.jar(地址:http: ...