2019.03.28 bzoj3326: [Scoi2013]数数(数位dp)
传送门
题意:
一个人数数,规则如下:
- 确定数数的进制B
- 确定一个数数的区间[L, R]
- 对于[L, R] 间的每一个数,把该数视为一个字符串,列出该字符串的所有连续子串对应的B进制数的值。
- 对所有列出的数求和。
结果用10 进制表示,对20130427取模。
思路:
我不知道为什么要从低位开始向高位处理2333333手动毒瘤
然后肝了好久幸好没有推错不然就自闭了
不过需要多预处理一点东西。
假设现在计算[1,a][1,a][1,a]的答案,aaa一个表示BBB进制数的数组
ssi:ss_i:ssi:所有不含前导000的iii位数的子串之和。
s1i:s_{1i}:s1i:所有包含前导000的iii位数的子串之和。
s2i:s_{2i}:s2i:所有包含前导000的iii位数的前缀串之和。
pwi:pw_i:pwi:BBB的iii次方。
spwi:spw_i:spwi:pwpwpw的前缀和。
预处理出上面的信息就可以递推了(注意我是从后往前推的所以很复杂):
设现在在第iii位,我们记fff表示iii~nnn满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的子串之和,pfpfpf表示i+1i+1i+1位推出的fff;
ggg表示满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的个数,pgpgpg表示i+1i+1i+1位推出的ggg;
sss表示满足aaa数组限制的所有n−i+1n-i+1n−i+1位数的前缀串之和,pspsps表示i+1i+1i+1位推出的sss。
然后就可以分第iii位填000,填111~ai−1a_i-1ai−1,aia_iai的情况大力转移了,注意特判ai=0a_i=0ai=0的情况。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
static char buf[rlen],*ib,*ob;
(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
return ib==ob?-1:*ib++;
}
inline int read(){
int ans=0;
char ch=gc();
while(!isdigit(ch))ch=gc();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
return ans;
}
typedef long long ll;
const int N=1e5+5,mod=20130427;
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
inline void update(int&a,const int&b){a=a+b>=mod?a+b-mod:a+b;}
int B,n,ans=0,a[N],pw[N],spw[N],s1[N],s2[N],ss[N];
inline int calc(int x){return (ll)(x+1)*x/2%mod;}
inline void init(){
pw[0]=spw[0]=1;
for(ri i=1;i<=n;++i)pw[i]=mul(pw[i-1],B),spw[i]=add(pw[i],spw[i-1]);
s1[0]=s2[0]=ss[0]=0;
for(ri i=1,tmp=calc(B-1);i<=n;++i)s2[i]=add(mul(tmp,mul(pw[i-1],spw[i-1])),mul(s2[i-1],B));
for(ri i=1,tmp=calc(B-1);i<=n;++i)s1[i]=add(mul(tmp,mul(pw[i-1],spw[i-1])),mul(B,add(s2[i-1],s1[i-1])));
for(ri i=1;i<=n;++i)ss[i]=add(mul(add(s1[i-1],s2[i-1]),B-1),mul(calc(B-1),mul(pw[i-1],spw[i-1]))),update(ss[i],ss[i-1]);
update(ans,ss[n-1]);
}
inline void solve(){
n=read();
for(ri i=1;i<=n;++i)a[i]=read();
init();
for(ri tmp,ps=0,pf=0,pg=1,s,f,g,i=n;i;--i,pf=f,pg=g,ps=s){
if(!a[i]){f=add(pf,ps),g=pg,s=ps;continue;}
f=s=0,g=1;
tmp=mul(a[i]-1,add(s1[n-i],s2[n-i]));
update(tmp,mul(mul(calc(a[i]-1),spw[n-i]),pw[n-i]));
update(f,tmp);
if(i==1)update(ans,tmp);
g=mul(g,mul(pw[n-i],a[i]-1));
update(s,mul(mul(calc(a[i]-1),pw[n-i]),spw[n-i]));
update(s,mul(s2[n-i],a[i]-1));
update(f,add(s1[n-i],s2[n-i]));
update(g,pw[n-i]);
update(s,s2[n-i]);
tmp=mul(mul(a[i],pg),spw[n-i]);
update(tmp,pf),update(tmp,ps);
update(f,tmp);
if(i==1)update(ans,tmp);
update(g,pg),update(s,mul(mul(pg,a[i]),spw[n-i])),update(s,ps);
}
}
inline void Solve(){for(ri i=1,sum=0;i<=n;++i)ans=add(ans,sum=add(mul(sum,B),mul(a[i],i)));}
int main(){
B=read();
solve();
ans=mod-ans;
Solve();
solve();
cout<<ans;
return 0;
}
2019.03.28 bzoj3326: [Scoi2013]数数(数位dp)的更多相关文章
- 2019.03.28 bzoj3322: [Scoi2013]摩托车交易(kruskal重构树+贪心)
传送门 题意咕咕咕 思路: 先把所有可以列车通的缩成一个点,然后用新图建立kruskalkruskalkruskal重构树. 这样就可以倒着贪心模拟了. 代码: #include<bits/st ...
- 2019.03.28 bzoj3325: [Scoi2013]密码(manacher+模拟)
传送门 题意: 现在有一个nnn个小写字母组成的字符串sss. 然后给你nnn个数aia_iai,aia_iai表示以sis_isi为中心的最长回文串串长. 再给你n−1n-1n−1个数bib_ ...
- BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP
BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺 ...
- BZOJ_1026_[SCOI2009]windy数_数位DP
BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...
- [bzoj 1026]windy数(数位DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1026 分析: 简单的数位DP啦 f[i][j]表示数字有i位,最高位的数值为j的windy数总 ...
- bzoj 1026 [SCOI2009]windy数(数位DP)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4550 Solved: 2039[Submit][Sta ...
- [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】
题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
随机推荐
- lamp之apache配置https访问
配置apache 使用https 注:怕其他人由于路径的原因出问题,首先声明一下,本人apache的安装目录为 : /usr/local/httpd2.4.25,如果不是,请参考进行配置 注: 对于如 ...
- springboot项目创建
1.在eclipse中创建springboot项目,右键找到New,然后找到Spring Starter Project, 如果menu中找不到Spring Starter Project就选择oth ...
- promise.then, setTimeout,await执行顺序问题
promise.then VS setTimeout 在chrome和node环境环境中均输出2, 3, 1, 先输出2没什么好说的,3和1顺序让人有些意外 原因: 有一个事件循环,但是任务队列可以有 ...
- install postgresql 10 on redhat linux 7 Redhat 安装 postgresql 10
---恢复内容开始--- 1. install linux 2. 切换mirror a. 备份原来的repo 文件, [root@localhost ~]# mv /etc/yum.repos.d/ ...
- mybatis查询如何返回List<Map>类型数据
只要设定resultType而不设定resultMap就可以了: <selectid="selectByPage"parameterType="java.uti ...
- Python设计模式 - UML - 活动图(Activity Diagram)
简介 活动图描述从一个活动到另一个活动的执行顺序.约束条件.引用对象及状态结果等方面的控制流,适用于对业务用例.工作流程或程序实现建模. 活动图建模步骤 - 确定活动图的范围和边界,对哪些工作流.哪些 ...
- SpringCloud Hystrix熔断之线程池
服务熔断 雪崩效应:是一种因服务提供者的不可用导致服务调用者的不可用,并导致服务雪崩的过程. 服务熔断:当服务提供者无法调用时,会通过断路器向调用方直接返回一个错误响应,而不是长时间的等待,避免服务雪 ...
- Find out where to contain the smartforms
Go to table E071 and give smarforms name and it will give the transport req for that. Run SE03, choo ...
- 理解StringBuilder
StringBuilder objects are like String objects, except that they can be modified. Internally, these o ...
- 转:Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-install-j8m0mf5q/mysqlclient
错误场景 第一次部署服务器时mysqlclient安装失败 思考 初步考虑是pip没有升级,最后发现不是这个原因. 解决办法 来源:https://blog.csdn.net/mr_tia/artic ...