【BZOJ5294】[BJOI2018]二进制(线段树)
【BZOJ5294】[BJOI2018]二进制(线段树)
题面
题解
二进制串在模\(3\)意义下,每一位代表的余数显然是\(121212\)这样子交替出现的。
其实换种方法看,就是\(1,-1,1,-1,...\)
如果询问一个二进制串能否被\(3\)整除,那么只需要考虑奇数位上的\(1\)的个数和偶数位上的\(1\)的个数就行了。
如果可以重排,我们来考虑如何分配。
首先对于一个长度为\(len\)的区间,模\(3\)余\(1\)的位有\([\frac{len+1}{2}]\)个,余\(-1\)的有\([\frac{len}{2}]\)个。假设要分配\(k\)个\(1\)。
凑成\(3\)的倍数的情况一定是\(1,-1\)两两配对,剩下较多的那个的数量是\(3\)的倍数。
如果\(k\)是偶数那么一定可以两两配对。
如果\(k\)是奇数的话,就只能\(k-3\)个\(1\)均匀分配给\(-1,1\),剩下\(3\)个分配给\(1\)。
那么需要满足\(\frac{k+3}{2}\le [\frac{len+1}{2}]\),拆开后如果\(len\)是奇数则要满足\(k\le len-2\),如果\(len\)是偶数则满足\(k\le len-3\)。
那么这个条件再进一步就是,如果\(0\)的个数\(\ge 3\),那么一定满足。
如果\(0\)的个数为\(2\),此时\(len=k+2\) 为奇数,也满足。
所以不合法的情况就是
- 只有一个\(1\)的区间(\(k\lt 3\),且\(k\)为奇数就只有\(1\))
- 出现了奇数个\(1\),且\(0\)的个数为\(0/1\)。
因为要做到不重,所以第一个条件可以补充成“区间内只有\(1\)个\(1\),且\(0\)的个数不少于\(2\)个”。
答案就可以用总的连续子序列的个数减去不合法的数量。
可以用线段树维护不合法的连续子序列的数量。
考虑合并两个节点之后如何产生贡献,
设\(dl[0/1][0/1]\)表示强制选择左端点的一段连续区间中,\(0\)的出现次数为\(0/1\),\(1\)的出现次数的奇偶性为\(0/1\)的序列个数,\(dr\)同理。
\(fl[0/1/2]\)表示强制经过左端点,\(1\)恰好出现了\(1\)次,且\(0\)的出现次数为\(0,1,\ge 2\)的序列个数。\(fr\)同理。
再统计一下左右连续的\(0\)的个数,以及区间内\(0/1\)的个数。
每次考虑跨过两段的不合法区间,统计答案即可。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 100100
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,Q,a[MAX];
struct data
{
ll dl[2][2],dr[2][2],fl[3],fr[3],l0,r0,s;
int s0,s1;
void init()
{
dl[0][0]=dr[0][0]=dl[0][1]=dr[0][1]=dl[1][0]=dr[1][0]=dl[1][1]=dr[1][1]=0;
fl[0]=fr[0]=fl[1]=fr[1]=fl[2]=fr[2]=0;
l0=r0=s0=s1=s=0;
}
data(){init();}
void pre(int x)
{
init();
if(x)dl[0][1]=dr[0][1]=s1=s=fl[0]=fr[0]=1;
else dl[1][0]=dr[1][0]=s0=l0=r0=1;
}
}t[MAX<<2];
data Merge(data A,data B)
{
data c;c.init();
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
{
c.dl[i][j]+=A.dl[i][j];
c.dr[i][j]+=B.dr[i][j];
if(i>=A.s0)c.dl[i][j]+=B.dl[i-A.s0][j^(A.s1&1)];
if(i>=B.s0)c.dr[i][j]+=A.dr[i-B.s0][j^(B.s1&1)];
}
for(int i=0;i<3;++i)
{
c.fl[i]+=A.fl[i];c.fr[i]+=B.fr[i];
if(!A.s1)c.fl[min(2,i+A.s0)]+=B.fl[i];
if(!B.s1)c.fr[min(2,i+B.s0)]+=A.fr[i];
}
if(A.s1==1&&B.l0)c.fl[min(2ll,A.s0+B.l0)]+=1,c.fl[2]+=B.l0-1;
if(B.s1==1&&A.r0)c.fr[min(2ll,B.s0+A.r0)]+=1,c.fr[2]+=A.r0-1;
c.l0=(A.s1==0)?A.l0+B.l0:A.l0;
c.r0=(B.s1==0)?B.r0+A.r0:B.r0;
c.s0=A.s0+B.s0;c.s1=A.s1+B.s1;
c.s=A.s+B.s;
c.s+=A.dr[0][0]*(B.dl[0][1]+B.dl[1][1]);
c.s+=A.dr[0][1]*(B.dl[0][0]+B.dl[1][0]);
c.s+=A.dr[1][0]*B.dl[0][1];
c.s+=A.dr[1][1]*B.dl[0][0];
if(B.l0)c.s+=B.l0*(A.fr[0]+A.fr[1]+A.fr[2])-A.fr[0];
if(A.r0)c.s+=A.r0*(B.fl[0]+B.fl[1]+B.fl[2])-B.fl[0];
return c;
}
void Build(int now,int l,int r)
{
if(l==r){t[now].pre(a[l]);return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=Merge(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int p)
{
if(l==r){t[now].pre(a[l]);return;}
int mid=(l+r)>>1;
if(p<=mid)Modify(lson,l,mid,p);
else Modify(rson,mid+1,r,p);
t[now]=Merge(t[lson],t[rson]);
}
data Query(int now,int l,int r,int L,int R)
{
if(L==l&&R==r)return t[now];
int mid=(l+r)>>1;
if(R<=mid)return Query(lson,l,mid,L,R);
if(L>mid)return Query(rson,mid+1,r,L,R);
return Merge(Query(lson,l,mid,L,mid),Query(rson,mid+1,r,mid+1,R));
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
Build(1,1,n);
Q=read();
while(Q--)
{
int opt=read(),l=read(),r;
if(opt==1)a[l]^=1,Modify(1,1,n,l);
else r=read(),printf("%lld\n",1ll*(r-l+1)*(r-l+2)/2-Query(1,1,n,l,r).s);
}
return 0;
}
【BZOJ5294】[BJOI2018]二进制(线段树)的更多相关文章
- BZOJ5294 BJOI2018 二进制 线段树
传送门 因为每一位\(\mod 3\)的值为\(1,2,1,2,...\),也就相当于\(1,-1,1,-1,...\) 所以当某个区间的\(1\)的个数为偶数的时候,一定是可行的,只要把这若干个\( ...
- 2019.02.12 bzoj5294: [Bjoi2018]二进制(线段树)
传送门 题意简述: 给出一个长度为nnn的二进制串. 你需要支持如下操作: 修改每个位置:1变0,0变1 询问对于一个区间的子二进制串有多少满足重排之后转回十进制值为333的倍数(允许前导000). ...
- BZOJ5294 BJOI2018二进制(线段树)
二进制数能被3整除相当于奇数.偶数位上1的个数模3同余.那么如果有偶数个1,一定存在重排方案使其合法:否则则要求至少有两个0且至少有3个1,这样可以给奇数位单独安排3个1. 考虑线段树维护区间内的一堆 ...
- BZOJ5294 [BJOI2018] 二进制 【线段树】
BJOI的题目感觉有点难写 题目分析: 首先推一波结论.接下来的一切都在模3意义下 现在我们将二进制位重组,不难发现的是2^0≡1,2^1≡2,2^2≡1,2^3≡2....所以我们考虑这样的式子 2 ...
- 中国石油大学(华东)暑期集训--二进制(BZOJ5294)【线段树】
问题 C: 二进制 时间限制: 1 Sec 内存限制: 128 MB提交: 8 解决: 2[提交] [状态] [讨论版] [命题人:] 题目描述 pupil发现对于一个十进制数,无论怎么将其的数字 ...
- nowcoder 211E - 位运算?位运算! - [二进制线段树][与或线段树]
题目链接:https://www.nowcoder.com/acm/contest/211/E 题目描述 请实现一个数据结构支持以下操作:区间循环左右移,区间与,区间或,区间求和. 输入描述: 第一行 ...
- Bzoj5294/洛谷P4428 [Bjoi2018]二进制(线段树)
题面 Bzoj 洛谷 题解 考虑一个什么样的区间满足重组之后可以变成\(3\)的倍数.不妨设\(tot\)为一个区间内\(1\)的个数.如果\(tot\)是个偶数,则这个区间一定是\(3\)的倍数,接 ...
- 洛谷P4428二进制 [BJOI2018] 线段树
正解:线段树 解题报告: 传送门! 话说开始看到这题的时候我想得hin简单 因为关于%3有个性质就是说一个数的各个位数之和%3=这个数%3嘛,小学基础知识? 我就想着,就直接建一棵树,只是这棵树要用个 ...
- POJ 2777 Count Color(线段树染色,二进制优化)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 42940 Accepted: 13011 Des ...
随机推荐
- 《梦断代码》Scott Rosenberg著(二)
书中有一段说的是一个闪烁缺陷——在改变某软件中某个窗体的尺寸时,屏幕会闪烁一秒钟左右.虽然该缺陷不会影响程序运行,但它不符合作者的审美观,历时六个多月仍然没能修正.其实在日常的编程中也有许多小bug的 ...
- hadoop和java 配置环境变量的的tar
第一步:打开工具上传tar包 如下图 第二步:在文件路径下查看是否上传成功 第三步:解压tar包 tar -zxvf hadoop.2.6.5.tar.gz 第四步:配置环 ...
- HDU 1089 到1096 a+b的输入输出练习
http://acm.hdu.edu.cn/showproblem.php?pid=1089 Problem Description Your task is to Calculate a + b.T ...
- jquery on绑定事件
描述:给一个或多个元素(当前的或未来的)的一个或多个事件绑定一个事件处理函数.(1.7版本开始支持,是 bind().live() 和 delegate() 方法的新的替代品) 语法:.on( eve ...
- C++常用宏
宏是由 #define 定义而来,在预处理阶段进行宏展开,它的格式是: #define N 2 + 2 // 仅仅是字符串替换 #define N (2 + 2) // 也是字符串 ,但是是(2 + ...
- vue二次实战(一)
创建好项目(npm run dev 运行项目:先不用运行,或先运行再关闭) 先安装axios! npm install axios 然后! npm install --save axios vue-a ...
- java 从键盘录入的三种方法
详细内容连接 https://blog.csdn.net/StriverLi/article/details/52984066
- Storm原理
zookeeper是对称结构
- Django 2.11 静态页面404 解决
在settings中配置 STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR,"static"), ...
- Vue单文件组件
前面的话 本文将详细介绍Vue单文件组件 概述 在很多 Vue 项目中,使用 Vue.component 来定义全局组件,紧接着用 new Vue({ el: '#container '}) 在每个页 ...