0x66 Tarjan算法与无向图连通性(1)
……是什么?
给定无向连通图G=(V,E)(不一定连通);
割点:若对于x∈V,从图中删去节点x以及所有与x关联的边后,G分裂成两个或两个以上不相连的子图,则称x为G的割点。
桥(割边):若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边。
(如果图不连通,“割点”和“桥”就是它的各个连通块的“割点”和“桥”)。
时间戳:在图的深度优先遍历过程中,按照每个节点第一次被访问的时间顺序,以此给予N个节点1~N的整数标记,该标记就被称为“时间戳”,记为dfn[x]。
搜索树:在无向联通图中任选一个节点出发进行深度优先遍历,每个点只访问一次。所有发生递归的边(x,y)构成一棵树,我们把它成为“无向联通图的搜索树”。
(严谨的,从x到y是对y的第一次访问)
搜索森林:无向图的各个连通块的搜索树构成无向图的“搜索森林”。
追溯值: 设subtree(x)表示搜索树中以x为根的子树,“追溯值”low[x]定义为以下节点的时间戳的最小值:
1.subtree(x)中的节点。
2.通过1条不在搜索树上的边,能够到达subtree(x)的节点。
割边判定法则:无向边(x,y)是桥,当且仅当搜索树上存在x的一个子节点y,满足:
dfn[x]<low[y];
割点判定法则:若x不是搜索树的根节点(深度优先遍历的起点),则x是割点当且仅当搜索树上存在x的一个子节点y,满足:
dfn[x]<=low[y];
……为什么?
割边判定法则:根据定义,dfn[x]<low[y]说明从subtree(y)出发,在不经过(x,y)的前提下,不管走哪条边,都无法到达x或比x更早访问的节点。若把(x,y)删除,则subtree(y)就好像形成了一个封闭的环境,与节点x没有边相连,图断开成了两部分,因此(x,y)是割边。反之,若不存在这样的子节点y,使得dfn[x]<low[y],则说明每个subtree(y)都能绕行其他边到达x或比x更早访问的节点,(x,y)自然就不是割边。
割点判定法则与之类似。
……怎么做?
追溯值:为了计算low[x],应该先令low[x]=dfn[x],然后考虑从x出发的每条边(x,y):
若在搜索树上x是y的父节点,则令low[x]=min(low[x],low[y]);
若无向边(x,y)不是搜索树上的边,则令low[x]=min(low[x],dfn[y]).
以上所有内容均来自于《算法竞赛进阶指南》
0x66 Tarjan算法与无向图连通性(1)的更多相关文章
- 0x66 Tarjan算法与无向图联通性
bzoj1123: [POI2008]BLO poj3694 先e-DCC缩点,此时图就变成了树,树上每一条边都是桥.对于添加边的操作,相当于和树上一条路径构环,导致该路径上所有边都不成为桥.那么找这 ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- tarjan算法求无向图的桥、边双连通分量并缩点
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- tarjan算法--求解无向图的割点和桥
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如 ...
- Light OJ - 1026 - Critical Links(图论-Tarjan算法求无向图的桥数) - 带详细注释
原题链接 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 也可以先用Tajan()进行dfs算出所有点 的low和dfn值,并记录dfs过程中每个 点的父节点:然后再把所有点遍历一遍 ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
- SPF Tarjan算法求无向图割点(关节点)入门题
SPF 题目抽象,给出一个连通图的一些边,求关节点.以及每个关节点分出的连通分量的个数 邻接矩阵只要16ms,而邻接表却要32ms, 花费了大量的时间在加边上. // time 16ms 1 ...
随机推荐
- python入门(十二):面向对象
1.场景:玩过游戏.主人公,进入了一个场景,有10个小怪物是一样的.有攻击力,血(100格).如果小怪物有多个数值需要管理,小怪物的血量.小怪物出现在屏幕的地点. 可以使用字典来进行记录: {&quo ...
- CodeWarrior 10 自定义关键字模版
==============================================版本信息开始============================================ 相关作 ...
- java实现将指定文件夹里所有文件路径输出到指定文件作为参数化文件给lr脚本使用
java实现将指定文件夹里所有文件路径输出到指定文件作为参数化文件给lr脚本使用 import java.io.BufferedReader; import java.io.BufferedWrite ...
- python——jieba分词过程
import jieba """函数2:分词函数""" def fenci(training_data): ""&quo ...
- Hillstone设备管理-恢复出厂设置
1.CLI命令行操作 unset all: 根据提示选择是否保存当前配置y/n: 选择是否重启y/n: 系统重启后即恢复到出厂设置. 2.webUI操作 “系统”—“配置”,点击“清除”按钮,系统会提 ...
- 53-java中的queue
java.util 接口 Queue<E> 类型参数: E - collection 中所保存元素的类型. 所有超级接口: Collection<E>, Iterable< ...
- Python深拷贝和浅拷贝!
在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用 一般有三种方法, alist=[1,2,3,[& ...
- mysql关闭groupby模式
Mysql5.7 出现 SELECT list is not in GROUP BY clause and contains nonaggregated column ‘sss.month_id’ w ...
- CentOS开机提示kernel panic - not syncing: Attempted to kill init! 解决方法
1.重新启动linux 系统,看见如图见面迅速按E键 2.看见如图界面在按E键编辑 3.如图界面使用上下键选择第二个在按E键 4.在最后一行后面添加 enforcing=0 按回车保存退出 5.在此 ...
- Jenkins+Gradle+Sonar进行Java项目代码分析
Jenkins+Maven+Sonar与Jenkins+Gradle+Sonar配置方法很相似,区别就是Java项目所用的编译工具不同,一个是maven,一个是gradle 使用maven编译工具的可 ...