Friendship
Time Limit: 2000MS   Memory Limit: 20000K
Total Submissions: 11429   Accepted: 3173

Description

In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if 
1. A knows B's phone number, or 
2. A knows people C's phone number and C can keep in touch with B. 
It's assured that if people A knows people B's number, B will also know A's number.

Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.

In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.

Input

The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j's number, then the j-th number in the (i+1)-th line will be 1, otherwise the number will be 0.

You can assume that the number of 1s will not exceed 5000 in the input.

Output

If there is no way to make A lose touch with B, print "NO ANSWER!" in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in ascending order that indicate the number of people who meet bad things. The integers are separated by a single space.

If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score.

Sample Input

3 1 3
1 1 0
1 1 1
0 1 1

Sample Output

1
2
思路:
感谢llw大佬的神奇优化!!!!
耗时两天,终于AC了,总算是证明了自己的算法没有错误。
网上遍地都是拆点的题解,奈何我实在是太弱了,弱到无法想象的地步,实在是看不懂拆点应该要怎么拆,所以我被逼无奈选择了暴力。
那就是,限制一次dfs只能跑出容量为1的流,并将这条流上的所有点标记为不可用,直到一次Dinic结束。
以此取代拆点的操作,是完全可行的,其他的操作都大体相同
终于终于,体会到了AC的快乐,看着题解写出来的题,渐渐地成为了我自闭的根源
代码
邻接矩阵
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
int mp[300][300];
int n,s,t;
const int inf = 2100000000;
int vis[400],num[400];
bool book[400]; struct edge
{
int u,v,next,w;
}e[400010];
int Head[400010],cur;
int ans[400010]; void add(int x,int y)
{ e[cur].u=x;
e[cur].v=y;
e[cur].next=Head[x];
e[cur].w=1;
Head[x]=cur;
cur++;
e[cur].u=y;
e[cur].v=x;
e[cur].next=Head[y];
e[cur].w=0;
Head[y]=cur;
cur++;
} bool bfs()
{
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
num[i]=Head[i];
}
vis[s]=1;
queue<int>q;
q.push(s);
int r=0;
while(!q.empty()){
int u=q.front();
q.pop();
int k=Head[u];
while(k!=-1){
if(!book[e[k].v]&&!vis[e[k].v]&&e[k].w){
vis[e[k].v]=vis[u]+1;
q.push(e[k].v);
}
k=e[k].next;
}
}
return vis[t];
} int dfs(int u)
{
if(u==t){return 1;} int &k=num[u];
while(k!=-1){
if(!book[e[k].v]&&vis[e[k].v]==vis[u]+1&&e[k].w){
int d=dfs(e[k].v);
e[k].w-=d;
e[k^1].w+=d;
if(d>0){book[u]=true;return 1;}
}
k=e[k].next;
}
return 0;
} void build()
{
cur=0;
memset(Head,-1,sizeof(Head));
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mp[i][j]) add(i,j);
}
}
} int Dinic(int y)
{
memset(book,0,sizeof(book));
book[y]=1;
int ans=0;
while(bfs()){
int f;
while((f=dfs(s))>0){//llw大佬太强了orz orz orz
ans+=f;
}
}
return ans;
} inline void rebuild(int tt)
{
for(int i=0;i<=cur;i+=2){
if(e[i].v==tt||e[i].u==tt){e[i].w=e[i^1].w=0;}
else if(e[i^1].w!=0){
e[i].w=1;
e[i^1].w=0;
}
} }
int main()
{
scanf("%d%d%d",&n,&s,&t);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&mp[i][j]);
}
}
if(mp[s][t]==1){printf("NO ANSWER!\n");return 0;}
build();
int maxx=Dinic(0);
rebuild(0);
int num=0;
for(int i=1;i<=n;i++){
if(i==s||i==t){continue;}
int y=Dinic(i);
if(y<maxx){
ans[++num]=i;
maxx=y;
if(maxx==0){break;}
rebuild(i);
}
else rebuild(0);
}
if(num==0){printf("0\n");return 0;}
printf("%d\n",num);
for(int i=1;i<=num;i++){
if(i!=1){printf(" ");}
printf("%d",ans[i]);
}
printf("\n");
}

  

 

POJ 1815 Friendship (Dinic)的更多相关文章

  1. POJ 1815 Friendship (Dinic 最小割)

    Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissions: 8025   Accepted: 2224 Descri ...

  2. POJ 1815 Friendship(字典序最小的最小割)

    Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissions: 10744   Accepted: 2984 Descr ...

  3. POJ 1815 Friendship(最大流最小割の字典序割点集)

    Description In modern society, each person has his own friends. Since all the people are very busy, ...

  4. POJ - 1815 Friendship (最小点割集)

    (点击此处查看原题) 题目分析 题意:有n个人,编号记为1~n,n个人之间可能有人可以互相联系,如果A能和B联系,那么至少满足这两种情况之一:(1)A知道B的电话(2)A可以和C联系,并且C可以和B联 ...

  5. POJ 1815 Friendship(最小割+字典序输出割点)

    http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...

  6. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

  7. POJ 2431 Expedition(探险)

    POJ 2431 Expedition(探险) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] A group of co ...

  8. POJ 3414 Pots(罐子)

    POJ 3414 Pots(罐子) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 You are given two po ...

  9. POJ 1847 Tram (最短路径)

    POJ 1847 Tram (最短路径) Description Tram network in Zagreb consists of a number of intersections and ra ...

随机推荐

  1. Yii2后台管理系统常规单据模块最佳实践

    后台管理系统的常规单据通常包括数据,页面,功能:其中数据,页面,功能又可以细分如下: 分类  二级分类  主要内容  注意事项  例如 数据 数据库迁移脚本  用于数据表生成及转态回滚 1.是否需要增 ...

  2. shiro框架的UsernamePasswordToken与对应Realm中的AuthenticationToken的一点比较

    这里以简单的登陆为例子 控制器对应的登陆方法: @RequestMapping(value = "/login", method = RequestMethod.GET) publ ...

  3. 五、同一台MySQL服务器启动多个端口-为读写分离做准备

    一.安装数据库 https://www.cnblogs.com/huiyi0521/p/10113280.html 二.使用 mysql 命令为 root 用户授权 mysql 远程连接服务 mysq ...

  4. LODOP.FORMAT格式转换【回调和直接返回值】

    Lodop中有一些格式转换函数,这些函数和其他众多函数一样,c-lodop需要使用回调函数On_Return返回,Lodop插件方式直接返回,通常混合部署,写法要兼容两个控件.可以用if (LODOP ...

  5. Sql Server 时间格式化

    0   或   100   (*)     默认值   mon   dd   yyyy   hh:miAM(或   PM)       1   101   美国   mm/dd/yyyy       ...

  6. do not track

    privacy.trackingprotection.enabled

  7. Previous Workflow Versions in Nintex Workflow

    Previous Workflow Versions in Nintex Workflow September 4, 2013 It occurred to me that even though I ...

  8. 【NLP】自然语言处理:词向量和语言模型

    声明: 这是转载自LICSTAR博士的牛文,原文载于此:http://licstar.net/archives/328 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领 ...

  9. BZOJ5063旅游——非旋转treap

    题目描述 小奇成功打开了大科学家的电脑. 大科学家打算前往n处景点旅游,他用一个序列来维护它们之间的顺序.初 始时,序列为1,2,...,n. 接着,大科学家进行m次操作来打乱顺序.每次操作有6步: ...

  10. P1282 多米诺骨牌 dp

    思路:dp[i][j] 的j是上半段的和的值   这里表示的是达到上半段值是j的最小次数 答案在最小的可达到的j #include<bits/stdc++.h> using namespa ...