图像的几何变换主要包括:平移、扩大与缩小、旋转、仿射、透视等等。图像变换是建立在矩阵运算基础上的,通过矩阵运算可以很快的找到对应关系。

1. 图像的平移

  图像的平移,沿着x方向tx距离,y方向ty距离,需要构造移动矩阵M。通过numpy来产生这个矩阵,并将其赋值给仿射函数cv2.warpAffine(). 
仿射函数cv2.warpAffine()接受三个参数,需要变换的原始图像,移动矩阵M 以及变换的图像大小(这个大小如果不和原始图像大小相同,那么函数会自动通过插值来调整像素间的关系)。

import cv2
import numpy as np
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg')
H = np.float32([[1,0,100],[0,1,50]])
rows,cols = img.shape[:2]
res = cv2.warpAffine(img,H,(rows,cols)) #需要图像、变换矩阵、变换后的大小
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

2. 图像的缩放

  图像的缩放有专门的一个函数,cv2.resize(),需要确定的是缩放比例。另外一个就是在缩放以后图像必然就会变化,这就又涉及到一个插值问题。那么这个函数中,缩放有几种不同的插值(interpolation)方法,在缩小时推荐cv2.INTER_ARER,扩大是推荐cv2.INTER_CUBIC和cv2.INTER_LINEAR。默认都是cv2.INTER_LINEAR

import cv2
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg')
# 插值:interpolation
# None本应该是放图像大小的位置的,后面设置了缩放比例,所有就不要了
res1 = cv2.resize(img,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC)
#直接规定缩放大小,这个时候就不需要缩放因子
height,width = img.shape[:2]
res2 = cv2.resize(img,(2*width,2*height),interpolation=cv2.INTER_CUBIC)
plt.subplot(131)
plt.imshow(img)
plt.subplot(132)
plt.imshow(res1)
plt.subplot(133)
plt.imshow(res2)
plt.show()

3. 图像的旋转

  图像旋转需构造旋转矩阵。opencv提供了一个函数: cv2.getRotationMatrix2D(),这个函数需要三个参数,旋转中心,旋转角度,旋转后图像的缩放比例。

import cv2
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
#第一个参数旋转中心,第二个参数旋转角度,第三个参数:缩放比例
M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
#第三个参数:变换后的图像大小
res = cv2.warpAffine(img,M,(rows,cols)) plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

4. 图像的仿射

  图像的旋转加上拉升就是图像仿射变换,仿射变化也需要一个变换矩阵M,opencv提供了根据变换前后三个点的对应关系来自动求解M。这个函数是 
M=cv2.getAffineTransform(pos1,pos2),其中两个位置就是变换前后的对应位置关系,输出的就是仿射矩阵M,然后再使用函数cv2.warpAffine()。

import cv2
import numpy as np
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(pts1,pts2)
#第三个参数:变换后的图像大小
res = cv2.warpAffine(img,M,(rows,cols))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

5. 图像的透射

  透视需要的是一个3*3的矩阵,opencv的函数是M = cv2.getPerspectiveTransform(pts1,pts2),其中pts需要变换前后的4个点对应位置。得到M后再通过函数cv2.warpPerspective(img,M,(200,200))进行。

import cv2
import numpy as np
import matplotlib.pyplot as plt img = cv2.imread('flower.jpg')
rows,cols = img.shape[:2]
pts1 = np.float32([[56,65],[238,52],[28,237],[239,240]])
pts2 = np.float32([[0,0],[200,0],[0,200],[200,200]])
M = cv2.getPerspectiveTransform(pts1,pts2)
res = cv2.warpPerspective(img,M,(200,200))
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(res)
plt.show()

OpenCV3计算机视觉Python语言实现笔记(五)的更多相关文章

  1. OpenCV3计算机视觉Python语言实现笔记(四)

    1. Canny边缘检测 OpenCV提供了Canny函数来识别边缘.Canny边缘检测算法有5个步骤:使用高斯滤波器对图像进行去噪.计算梯度.在边缘上使用非最大抑制(NMS).在检测到的边缘上使用双 ...

  2. OpenCV3计算机视觉Python语言实现笔记(三)

    一.使用OpenCV处理图像 1.不同颜色空间的转换 OpenCV中有数百种关于在不同色彩空间之间转换的方法.当前,在计算机视觉中有三种常用的色彩空间:灰度.BGR以及HSV(Hue, Saturat ...

  3. OpenCV3计算机视觉Python语言实现笔记(二)

    1. 图像与原始字节之间的转换 从概念上讲,一个字节能表示0到255的整数.目前,对于多有的实时图像应用而言,虽然有其他的表示形式,但一个像素通常由每个通道的一个字节表示. 一个OpenCV图像是.a ...

  4. OpenCV3计算机视觉Python语言实现笔记(一)

    Python3下OpenCV的安装 :http://blog.csdn.net/lwplwf/article/details/61616493 1. 读/写图像文件 OpenCV的imread()函数 ...

  5. 《OpenCV3 计算机视觉--Python语言实现 第二版》源代码及纠错

    1.源代码下载地址 <OpenCV3 计算机视觉--Python语言实现 第二版>由我们翻译,英文书名<Learning OpenCV3 Computer Vision with P ...

  6. Go语言学习笔记五: 条件语句

    Go语言学习笔记五: 条件语句 if语句 if 布尔表达式 { /* 在布尔表达式为 true 时执行 */ } 竟然没有括号,和python很像.但是有大括号,与python又不一样. 例子: pa ...

  7. 学习CV:《OpenCV 3计算机视觉Python语言实现第2版》中文PDF+英文PDF+代码

    理解与计算机视觉相关的算法.模型以及OpenCV 3 API背后的基本概念,有助于开发现实世界中的各种应用程序(比如:安全和监视领域的工具). OpenCV 3是一种先进的计算机视觉库,可以用于各种图 ...

  8. OpenCV3计算机视觉+Python(五)

    人脸检测和识别 本章将介绍Haar级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配.本章将考虑如何将多个Haar级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人 ...

  9. python语言学习笔记整理

    什么是程序? 程序等于数据结构加算法,那么数据结构是一个静态的东西,算法是一个动态的东西,我们用一个新的语言编写这个程序,我们要考虑到语言也主要由数据结构和算法相关的东西,或静态或动态的东西来构成,所 ...

随机推荐

  1. GeoServer中使用样式化图层描述符(sld)给WMS加注记

    现有一个shp格式的道路注记文件,用点来表示注记的位置,属性表中保存每个点对应的字,在QGIS中打开如下图所示 它的属性表如下 现需要把道路数据和它的注记发布为WMS服务,通过GeoServer直接发 ...

  2. Android权限之动态权限

    安卓系统的权限管理机制从API 23 (也就是Android 6.0 又叫做 Android M,)之后发生了比较大的改变,在一些比较危险的权限上要求必须申请动态权限,即使你在AndroidMainf ...

  3. 2014年11月17~11月18日,杨学明老师《企业IT需求收集和实施》内训在湖南长沙某酒店成功举办!

    2014年11月17至18日,受湖南某软件企业的邀请,杨学明老师<企业IT需求收集和实施>内训在某长沙某五星级酒店成功举办!来自全国各地的IT高管和企业负责人参加了此次培训.杨学明老师分别 ...

  4. matlab练习程序(求向量间的旋转矩阵与四元数)

    问题是这样,如果我们知道两个向量v1和v2,计算从v1转到v2的旋转矩阵和四元数,由于旋转矩阵和四元数可以互转,所以我们先计算四元数. 我们可以认为v1绕着向量u旋转θ​角度到v2,u垂直于v1-v2 ...

  5. spark查看DF的partition数目及每个partition中的数据量【集群模式】

    println("--------------------"+data.rdd.getNumPartitions) // 获取DF中partition的数目 val partiti ...

  6. Centos7开启ssh免密码登录

    1.输入命令:cd .ssh进入rsa公钥私钥目录(清空旧秘钥) 2.在当前目录下执行ssh-keygen -t rsa,三次回车后生成新的公钥(id_rsa.pub)私钥(id_rsa)文件(每个节 ...

  7. Scala高阶函数实践

    高阶函数主要有两种:一种是将一个函数当做另外一个函数的参数(即函数参数):另外一种是返回值是函数的函数.package sparkCore/** * Created by zhen on 2018/3 ...

  8. PHP断言(ASSERT)的用法

    简述 编写代码时,我们总是会做出一些假设,断言就是用于在代码中捕捉这些假设,可以将断言看作是异常处理的一种高级形式.程序员断言在程序中的某个特定点该的表达式值为真.如果该表达式为假,就中断操作. 可以 ...

  9. zabbix监控自动发现监控tomcat(V1)

    背景说明: 由于zabbix监控使用自带的模版,只能监控主机上只有1个tomcat的场景适合,虽然网上很多朋友都是在每个监控项上面添加一个空格来解决问题.但是个人感觉这种方法还是蛮麻烦的,所以写一篇使 ...

  10. [20180819]关于父子游标问题(11g).txt

    [20180819]关于父子游标问题(11g).txt --//sql语句存在父子游标,子游标堆6在父游标堆0里面.--//如果存在许多子游标的情况下,父游标堆0是否大小是发生变化呢.测试看看.--/ ...