——BZOJ2002

Description

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数\(n\),表示地上有\(n\)个装置,装置的编号从\(0\)到\(n-1\),接下来一行有\(n\)个正整数,依次为那\(n\)个装置的初始弹力系数。第三行有一个正整数\(m\),接下来\(m\)行每行至少有两个数\(i\)、\(j\),若\(i=1\),你要输出从\(j\)出发被弹几次后被弹飞,若\(i=2\)则还会再输入一个正整数\(k\),表示第j个弹力装置的系数被修改成\(k\)。对于\(20\%\)的数据\(n,m \le 10000\),对于\(100\%\)的数据\(n \le 200000\),\(m \le 100000\)

Output

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input

4
1 2 1 1
3
1 1
2 1 1
1 1

Sample Output

2
3

Analysis

这道题的正解是LCT?

不过这是省选题,一定有其他的解法,这里就有一个分块做法。

O(n)维护两个数组to和outto,to代表每个位置跳到块内最后一个位置的最少步数,outto表示这个位置跳到第二个块的新位置。这两个数组倒着维护。

然后就能做了。

询问和修改的时间复杂度都是\(O(\sqrt n)\),因为一共\(\sqrt n\)个块,每个块内\(\sqrt n\)个元素。

code

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int ans = 0,op = 1;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-') op = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9')
{
ans *= 10;
ans += ch - '0';
ch = getchar();
}
return ans * op;
}
const int maxn = 2e5 + 5;
int seq[maxn];
int blo[10005];
int to[maxn];
int outto[maxn];
int m,n;
int cnt,num,cntt=1;
int qpos(int x)
{
return x % cnt == 0 ? x / cnt : x / cnt + 1;
}
int qlast(int x)
{
if(qpos(x) == num)
return n;
return cnt * qpos(x);
}
int qfirst(int x)
{
return cnt * (qpos(x) - 1) + 1;
}
int main()
{
n = read();
cnt = sqrt(n);
num = qpos(n);
for(int i=1;i<=n;i++)
seq[i] = read();
for(int i=n;i>=1;i--)
{
if(i + seq[i] > qlast(i))
{
to[i] = i + seq[i];
outto[i] = 1;
}
else
{
to[i] = to[i+seq[i]];
outto[i] = outto[i+seq[i]] + 1;
}
}
// printf("\n***\n");
// for(int i=1;i<=n;i++)
// printf("%d ",to[i]);
// printf("\n");
// for(int i=1;i<=n;i++)
// printf("%d ",outto[i]);
// printf("\n***\n");
m = read();
for(int ct=1;ct<=m;ct++)
{
int ju;
ju = read();
if(ju == 1)
{
int x,ans;
x = read();
x+=1;
ans = outto[x];
x = to[x];
while(x <= n)
{
ans += outto[x];
x = to[x];
}
printf("%d\n",ans);
}
else
{
int x,k;
x = read();
k = read();
x+=1;
seq[x] = k;
for(int i=x;i>=qfirst(x);i--)
{
if(i + seq[i] > qlast(i))
{
to[i] = i + seq[i];
outto[i] = 1;
}
else
{
to[i] = to[i+seq[i]];
outto[i] = outto[i+seq[i]] + 1;
}
}
}
}
return 0;
}

弹飞绵羊[HNOI2010]的更多相关文章

  1. 【codevs2333】&【BZOJ2002】弹飞绵羊[HNOI2010](分块)

    我其实是在codevs上看到它的题号后才去做这道题的...2333... 题目传送门:codevs:http://codevs.cn/problem/2333/ bzoj:http://www.lyd ...

  2. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 9071  Solved: 4652[Submi ...

  3. 【bzoj2002】[Hnoi2010]Bounce 弹飞绵羊 link-cut-tree

    2016-05-30 11:51:59 用一个next数组,记录点x的下一个点是哪个 查询时,moveroot(n+1),access(x),splay(x) ,输出size[ch[x][0]]即为答 ...

  4. 【bzoj2002】[Hnoi2010]Bounce 弹飞绵羊 分块

    [bzoj2002][Hnoi2010]Bounce 弹飞绵羊 2014年7月30日8101 Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀 ...

  5. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  6. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  7. bzoj 2002: [Hnoi2010]Bounce 弹飞绵羊 動態樹

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 4055  Solved: 2172[Submi ...

  8. bzoj 2002 : [Hnoi2010]Bounce 弹飞绵羊 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 题面: 2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: ...

  9. P3203 [HNOI2010]弹飞绵羊(LCT)

    P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他 ...

随机推荐

  1. java-索引

    集合 集合之深入理解HashMap HashMap的实现原理,以及在JDK1.7和1.8的区别 Java集合---ConcurrentHashMap原理分析 ConcurrentHashMap原理分析 ...

  2. 转载:Java Lock机制解读

    Java Lock机制解读 欢迎转载: https://blog.csdn.net/chengyuqiang/article/details/79181229 1.synchronized synch ...

  3. PHP语言入门的学习方法十要素

    对于PHP程序设计语言来说.每个人的学习方式不同,写这篇文章的目的是分享一下自己的学习过程,仅供参考,不要一味的用别人的学习方法,找对自己有用的学习方式.经常在某些论坛和QQ群里看到一些朋友会问“怎样 ...

  4. API手册(2017)

    本页存放内容: API手册. 少量教程 [旧的工具页面] (是一些旧的页面.不放在外面了,这里做个索引) http://www.cnblogs.com/qq21270/p/3538677.html 常 ...

  5. 关于No qualifying bean of type [XXX.XXX] found for dependency 的一次记录

    异常开始于spring+springmvc+mybatis 注解配置,启动tomcat服务器出现No qualifying bean of type [com.***.service] found f ...

  6. Mssql合并查询结果

    在项目开发中,有时会碰到将列记录合并为一行的情况,例如根据地区将人员姓名合并,或根据拼音首字母合并城市等,下面就以根据地区将人员姓名合并为例,详细讲一下合并的方法. 首先,先建一个表,并添加一些数据, ...

  7. Gradle 打多渠道包

    使用gradle 打多渠道包记录经验如下图可见,每个渠道是包含debug 和realse版本的.通过打印BASE_URL 发现在渠道和版本中都可以修改BuildConfig的常量,这样一次可以打出多个 ...

  8. jquery中的 jquery.contains(a,b)

    jquery.contains(a,b) 判断元素 a中是否包含 b 元素: 源码: contains = isNative(docElem.contains) || docElem.compareD ...

  9. Java框架spring 学习笔记(十一):aop相关概念

    为什么要引入aop? 比如如下情景: 在父类的方法名称发送了变化,在子类调用的方法也需要变化,当工程规模越来越大的时候,维护起来相当不方便,于是就引入了横向切面aop. aop的相关概念: 连接点:类 ...

  10. Mysql优化策略

    总的来说:1.数据库设计和表创建时就要考虑性能 2.sql的编写需要注意优化 3.分区.分表.分库 设计表的时候: 1.字段避免null值出现,null值很难查询优化且占用额外的索引空间,推荐默认数字 ...