假设一个三层的神经网络结构图如下:

对于一个单独的训练样本x其二次代价函数可以写成:

C = 1/2|| y - aL||2 = 1/2∑j(yj - ajL)2

ajL=σ(zjL)

zjl = ∑kωjklakl-1 + bjl

代价函数C是ajL的函数,ajL又是zjL的函数,zjL又是ωjkL的函数,同时又是akL-1的函数......

证明四个基本方程(BP1-BP4),所有这些都是多元微积分的链式法则的推论

δjL = (∂C/∂ajL)σ'(zjL)                                                         (BP1)

δjl = ∑ωkjl+1δkl+1σ'(zjl)                                                    (BP2)

      ∂C/∂ωjk= δjlakl-1                                                                           (BP3)

∂C/∂bj= δjl                                                                                      (BP4)

1.让我们从方程(BP1)开始,它给出了输出误差δL的表达式。

δjL = ∂C/∂zjL

应用链式法则,我们可以就输出激活值的偏导数的形式重新表示上面的偏导数:

δjL = ∑(∂C/∂akL)(∂akL/∂zjL)

这里求和是在输出层的所有神经元k上运行的,当然,第kth个神经元的输出激活值akL只依赖于当k=j时第jth个神经元的带权输入zjL。所以当k≠j

时,∂akL/∂zjL=0。结果简化为:

δjL = (∂C/∂ajL)(∂ajL/∂zjL)

由于ajL=σ(zjL),右边第二项可以写成σ'(zjL),方程变成

δjL = (∂C/∂ajL)σ‘(zjL)

2.证明BP2,它给出了下一层误差δl+1的形式表示误差δl。为此我们要以δkl+1=∂C/∂zkl+1的形式重写 δjl = ∂C/∂zjl

δjl = ∂C/∂zjl

=∑(∂C/∂zkl+1)(∂zkl+1/∂zjl)

=∑(∂zkl+1/∂zjlkl+1

这里最后一行我们交换了右边的两项,并用δkl+1的定义带入。为此我们对最后一行的第一项求值,

注意:

zkl+1 = ∑jωkjl+1ajl + bkl+1 =  ∑jωkjl+1σ(zjl) + bkl+1 

做微分得到

∂zkl+1 /∂zjl = ωkjl+1σ'(zjl)

带入上式:

δjl = ∑ωkjl+1δkl+1σ'(zjl)

3.证明BP3。计算输出层∂C/∂ωjkL:

∂C/∂ωjkL = ∑m (∂C/∂amL)(∂amL/∂ωjkL )

这里求和是在输出层的所有神经元k上运行的,当然,第kth个神经元的输出激活值amL只依赖于当m=j时第jth个神经元的输入权重ωjkL。所以当k≠j

   时,∂amL/∂ωjkL=0。结果简化为:

      ∂C/∂ωjkL = (∂C/∂ajL)(∂ajL/∂zjL)*(∂zjL/∂ωjkL)

= δjLakL-1

计算输入层上一层(L-1):

∂C/∂ωjkL-1= (∑m(∂C/∂amL)(∂amL/∂zmL)(∂zmL/∂ajL-1))(/∂ajL-1/∂zjL-1)(∂zjL-1/∂ωjkL-1)

= (∑mδmLωmjL)σ'(zjL-1)akL-2

= δjL-1akL-2

对于处输入层的任何一层(l):

∂C/∂ωjkl = (∂C/∂zjl )(∂zjl/∂ωjkl ) = δjlakl-1

4.证明BP4。计算输出层∂C/∂bjL:

∂C/∂bjL = ∑m (∂C/∂amL)(∂amL/∂bjL )

这里求和是在输出层的所有神经元k上运行的,当然,第kth个神经元的输出激活值amL只依赖于当m=j时第jth个神经元的输入权重bjL。所以当k≠j

   时,∂amL/∂bjL=0。结果简化为:

      ∂C/∂bjL = (∂C/∂ajL)(∂ajL/∂zjL)*(∂zjL/∂bjL)

= δjL

计算输入层上一层(L-1):

∂C/∂bjL-1= (∑m(∂C/∂amL)(∂amL/∂zmL)(∂zmL/∂ajL-1))(/∂ajL-1/∂zjL-1)(∂zjL-1/∂bjL-1)

= (∑mδmLωmjL)σ'(zjL-1)

= δjL-1

对于处输入层的任何一层(l):

∂C/∂bj= (∂C/∂zjl )(∂zjl/∂bjl) = δjl

参考文献

[1]]神经网络基础

[2]Neural Networks and Deep Learning.       Michael A. Nielsen

[3]一文弄懂神经网络中的反向传播法

[4]深度神经网络(DNN)反向传播算法(BP)

第一节,windows和ubuntu下深度学习theano环境搭建的更多相关文章

  1. ubuntu 深度学习cuda环境搭建,docker-nvidia 2019-02

    ubuntu 深度学习cuda环境搭建 ubuntu系统版本 18.04 查看GPU型号(NVS 315 性能很差,比没有强) 首先最好有ssh服务,以下操作都是远程ssh执行 lspci | gre ...

  2. 人工智能之深度学习-初始环境搭建(安装Anaconda3和TensorFlow2步骤详解)

    前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结 ...

  3. ubuntu下的c/c++环境搭建

    原文地址:http://www.cnblogs.com/hitwtx/archive/2011/12/03/2274556.html ubuntu下的c/c++环境搭建是比较简单,因为有apt和新立得 ...

  4. Ubuntu16.04深度学习基本环境搭建,tensorflow , keras , pytorch , cuda

    Ubuntu16.04深度学习基本环境搭建,tensorflow , keras , pytorch , cuda Ubuntu16.04安装 参考https://blog.csdn.net/flyy ...

  5. 深度学习开发环境搭建教程(Mac篇)

    本文将指导你如何在自己的Mac上部署Theano + Keras的深度学习开发环境. 如果你的Mac不自带NVIDIA的独立显卡(例如15寸以下或者17年新款的Macbook.具体可以在"关 ...

  6. Ubuntu下kafka集群环境搭建及测试

    kafka介绍: Kafka[1是一种高吞吐量[2]  的分布式发布订阅消息系统,有如下特性: 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能 ...

  7. Ubuntu下php网站运行环境搭建

    第一步:查看是否安装lamp相关软件: dpkg -s 软件名称,比如php.mysql.apache. dpkg-query -l 软件名称 要列出你系统中安装的所有包,输入下面的命令:dpkg - ...

  8. ubuntu下android开发工作环境搭建

    www.bubuko.com/infodetail-655571.html 解压软件安装: sudo apt-get install unrar rar zip gzip  串口工具安装: sudo ...

  9. linux下安卓编译apk环境搭建

    ubuntu下linux安卓编译环境搭建. 配置好编译环境 (前提是已经安装了jdk,可以用java -verison 命令查看) 一.设置环境变量 用vi  ~/.bashrc  打开编译环境 JA ...

随机推荐

  1. github上测试服出现bug,如何回滚并获得合并之前的分支

    使用场景: 当我们提交了一个pr,但是该pr合并之后,经过在测试测试有问题,需要回滚.这个时候主master代码将会被回滚到提交你的pr之前的代码.而你的pr由于已经被合并过了,所以无法继续提交. 这 ...

  2. linux不同终端的操作是如何在messages日志中区分的

    今天在定位一个问题时,查看message日志,需要知道message日志中的记录分别是哪个Xterm终端操作的.比较了半天才发现原来日志中可以通过pts来进行区分.如下所示: --12T15:::|n ...

  3. 手把手制作一个简单的IDEA插件(环境搭建Demo篇)

    新建IDEA插件File --> new --> Project--> Intellij PlatForm Plugin-->Next-->填好项目名OK 编写插件新建工 ...

  4. python数学第七天【期望的性质】

  5. 如何快速定位到DBGrid的某一行!!!急...

    比如我查找张三,那么DBGrid就可以定位到张三那行并选中这行,除了用循环实现还有没有快速定位的方法,谢谢! 解决方案 » to SuperTitan001 那如何找到张三的这行呢?除了用循环还有什么 ...

  6. java 中的迭代

    package cn.zhou.com; import java.util.ArrayList; import java.util.Collection; import java.util.Itera ...

  7. Spring Boot 构建电商基础秒杀项目 (五) 用户注册

    SpringBoot构建电商基础秒杀项目 学习笔记 UserService 添加 void register(UserModel userModel) throws BusinessException ...

  8. k8s(一) kubeadm简单集群初始化

    写给想入门kubernetes的同学们 # 系统版本 [root@master ~]# cat /etc/os-release NAME="CentOS Linux" VERSIO ...

  9. How to execute a Stored Procedure with Entity Framework Code First

    Recently I worked on a project, which I started as code first and then I forced to switch to Databas ...

  10. PlaNet,使用图像输入来学习世界模型

    Google AI团队与DeepMind合作,上周宣布了一个名为PlaNet的新的开源“Deep Planning”网络. PlaNet是一个人工智能代理,它只使用图像输入来学习世界模型,并使用这些模 ...