为什么需要[EnumeratorCancellation]?
为什么需要 [EnumeratorCancellation]?
在使用 C# 编写异步迭代器时,您可能会遇到如下警告:
warning CS8425: 异步迭代器“TestConversationService.ChatStreamed(IReadOnlyList<ChatMessage>, ChatCompletionOptions, CancellationToken)”具有一个或多个类型为 "CancellationToken" 的参数,但它们都未用 "EnumeratorCancellation" 属性修饰,因此将不使用所生成的 "IAsyncEnumerable<>.GetAsyncEnumerator" 中的取消令牌参数。

看到这样的警告,您可能会困惑:究竟需要在异步迭代器的方法参数上添加 [EnumeratorCancellation] 属性吗?如果不添加,会有什么区别? 让我们深入探讨一下这个问题,揭示其背后的真相。
正常调用时,[EnumeratorCancellation] 的影响
如果您只是简单地在异步迭代器方法中传递一个普通的 CancellationToken,无论是否使用 [EnumeratorCancellation],方法的行为似乎并没有显著区别。例如:
public async IAsyncEnumerable<int> GenerateNumbersAsync(CancellationToken cancellationToken = default)
{
for (int i = 0; i < 10; i++)
{
cancellationToken.ThrowIfCancellationRequested();
yield return i;
await Task.Delay(1000, cancellationToken);
}
}
public async Task ConsumeNumbersAsync()
{
CancellationTokenSource cts = new CancellationTokenSource();
Task cancelTask = Task.Run(async () =>
{
await Task.Delay(3000);
cts.Cancel();
});
try
{
await foreach (var number in GenerateNumbersAsync(cts.Token))
{
Console.WriteLine(number);
}
}
catch (OperationCanceledException)
{
Console.WriteLine("枚举已被取消");
}
await cancelTask;
}
输出如下:
0
1
2
枚举已被取消
在上述代码中,即使没有使用 [EnumeratorCancellation],取消令牌 cts.Token 依然会生效,导致迭代过程被取消。这可能会让开发者误以为 [EnumeratorCancellation] 没有实际作用,进而引发更多的困惑。
揭开真相:生产者与消费者的职责分离
实际上,[EnumeratorCancellation] 的核心作用在于 实现生产者与消费者的职责分离。具体来说:
生产者(即提供数据的异步迭代方法)专注于数据的生成和响应取消请求,不关心取消请求的来源或何时取消。
消费者(即使用数据的部分)负责控制取消逻辑,独立地决定何时取消整个迭代过程。
通过这种设计,生产者不需要知道取消请求是由谁或何时发起的,简化了生产者的设计,同时赋予消费者更大的控制权。这不仅提高了代码的可维护性和可复用性,还避免了取消逻辑的混乱。
示例说明
下面通过一个示例,直观地展示 [EnumeratorCancellation] 如何实现职责分离。
1. 定义异步迭代器方法
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
public class DataProducer
{
public async IAsyncEnumerable<int> ProduceData(
[EnumeratorCancellation] CancellationToken cancellationToken = default)
{
int i = 0;
while (true)
{
cancellationToken.ThrowIfCancellationRequested();
Console.WriteLine($"[Iterator] 生成数字: {i}");
yield return i++;
await Task.Delay(1000, cancellationToken); // 模拟数据生成延迟
}
}
}
在这个 DataProducer 类中,ProduceData 方法使用 [EnumeratorCancellation] 标注了 cancellationToken 参数。这意味着,当消费者通过 WithCancellation 传递取消令牌时,编译器会自动将该取消令牌传递给 ProduceData 方法的 cancellationToken 参数。
2. 定义消费者方法
using System;
using System.Threading;
using System.Threading.Tasks;
public class DataConsumer
{
public async Task ConsumeDataAsync(IAsyncEnumerable<int> producer)
{
using CancellationTokenSource cts = new CancellationTokenSource();
// 在5秒后发出取消请求
_ = Task.Run(async () =>
{
await Task.Delay(5000);
cts.Cancel();
Console.WriteLine("[Trigger] 已发出取消请求");
});
try
{
// 通过 WithCancellation 传递取消令牌
await foreach (var data in producer.WithCancellation(cts.Token))
{
Console.WriteLine($"[Consumer] 接收到数据: {data}");
}
}
catch (OperationCanceledException)
{
Console.WriteLine("[Consumer] 数据接收已被取消");
}
}
}
在 DataConsumer 类中,ConsumeDataAsync 方法创建了一个 CancellationTokenSource,并在5秒后取消它。通过 WithCancellation 方法,将取消令牌传递给 ProduceData 方法。这样,消费者完全控制了取消逻辑,而生产者只需响应取消请求。
3. 执行示例
public class Program
{
public static async Task Main(string[] args)
{
var producer = new DataProducer();
var consumer = new DataConsumer();
await consumer.ConsumeDataAsync(producer.ProduceData());
}
}
预期输出:
[Iterator] 生成数字: 0
[Consumer] 接收到数据: 0
[Iterator] 生成数字: 1
[Consumer] 接收到数据: 1
[Iterator] 生成数字: 2
[Consumer] 接收到数据: 2
[Iterator] 生成数字: 3
[Consumer] 接收到数据: 3
[Iterator] 生成数字: 4
[Consumer] 接收到数据: 4
[Trigger] 已发出取消请求
[Consumer] 数据接收已被取消
在5秒后,取消请求被触发,迭代器检测到取消并抛出 OperationCanceledException,导致迭代过程被中断。请注意DataConsumer在接收生产出来的数据 IAsyncEnumerable<int> 时,已经错过了在生产函数中传入 cancellationToken 的机会,但作为消费者,仍然可以通过 .WithCancellation 方法进行优雅取消。
这展示了生产者与消费者如何通过 WithCancellation 和 [EnumeratorCancellation] 实现职责分离,消费者能够独立地控制取消逻辑,而生产者只需响应取消请求。
CancellationToken 与 WithCancellation 同时作用时的行为
那么,如果在异步迭代器方法中同时传递了 CancellationToken 参数,并通过 WithCancellation 指定了不同的取消令牌,取消操作会听哪个的?还是都会监听?
结论是:两者都会生效,只要其中任意一个取消令牌被触发,迭代器都会检测到取消请求并中断迭代过程。这取决于方法内部如何处理多个取消令牌。
示例演示
以下是一个详细的示例,展示当同时传递 CancellationToken 参数和使用不同的 WithCancellation 时的行为。
1. 定义异步迭代器方法
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
public class EnumeratorCancellationDemo
{
// 异步迭代器方法,接受两个 CancellationToken
public async IAsyncEnumerable<int> GenerateNumbersAsync(
[EnumeratorCancellation] CancellationToken cancellationToken,
CancellationToken externalCancellationToken = default)
{
int i = 0;
try
{
while (true)
{
// 检查两个取消令牌
cancellationToken.ThrowIfCancellationRequested();
externalCancellationToken.ThrowIfCancellationRequested();
Console.WriteLine($"[Iterator] 生成数字: {i}");
yield return i++;
// 模拟异步操作
await Task.Delay(1000, cancellationToken);
}
}
finally
{
Console.WriteLine("[Iterator] 迭代器已退出。");
}
}
}
2. 定义消费者方法
public class Program
{
static async Task Main(string[] args)
{
Console.WriteLine("启动枚举取消示例...\n");
var demo = new EnumeratorCancellationDemo();
// 测试1: 先取消方法参数
Console.WriteLine("=== 测试1: 先取消方法参数 ===\n");
await TestCancellation(demo, cancelParamFirst: true);
// 测试2: 先取消 WithCancellation
Console.WriteLine("\n=== 测试2: 先取消 WithCancellation ===\n");
await TestCancellation(demo, cancelParamFirst: false);
Console.WriteLine("\n演示结束。");
Console.ReadLine();
}
static async Task TestCancellation(EnumeratorCancellationDemo demo, bool cancelParamFirst)
{
using CancellationTokenSource ctsParam = new CancellationTokenSource();
using CancellationTokenSource ctsWith = new CancellationTokenSource();
if (cancelParamFirst)
{
// 第一个取消任务:3秒后取消 ctsParam
_ = Task.Run(async () =>
{
await Task.Delay(3000);
ctsParam.Cancel();
Console.WriteLine("[Trigger] 已取消 ctsParam (方法参数)");
});
// 第二个取消任务:5秒后取消 ctsWith
_ = Task.Run(async () =>
{
await Task.Delay(5000);
ctsWith.Cancel();
Console.WriteLine("[Trigger] 已取消 ctsWith (WithCancellation)");
});
}
else
{
// 第一个取消任务:3秒后取消 ctsWith
_ = Task.Run(async () =>
{
await Task.Delay(3000);
ctsWith.Cancel();
Console.WriteLine("[Trigger] 已取消 ctsWith (WithCancellation)");
});
// 第二个取消任务:5秒后取消 ctsParam
_ = Task.Run(async () =>
{
await Task.Delay(5000);
ctsParam.Cancel();
Console.WriteLine("[Trigger] 已取消 ctsParam (方法参数)");
});
}
try
{
// 传递 ctsWith.Token 作为方法参数,并通过 WithCancellation 传递 ctsWith.Token
await foreach (var number in demo.GenerateNumbersAsync(ctsWith.Token, ctsParam.Token).WithCancellation(ctsWith.Token))
{
Console.WriteLine($"[Consumer] 接收到数字: {number}");
}
}
catch (OperationCanceledException ex)
{
string reason = ex.CancellationToken == ctsWith.Token ? "WithCancellation" : "方法参数";
Console.WriteLine($"[Iterator] 迭代器检测到取消。原因: {reason}");
Console.WriteLine("[Consumer] 枚举已被取消。");
}
}
}
3. 运行示例并观察结果
启动程序后,控制台输出可能如下所示:
启动枚举取消示例...
=== 测试1: 先取消方法参数 ===
[Iterator] 生成数字: 0
[Consumer] 接收到数字: 0
[Iterator] 生成数字: 1
[Consumer] 接收到数字: 1
[Iterator] 生成数字: 2
[Consumer] 接收到数字: 2
[Trigger] 已取消 ctsParam (方法参数)
[Iterator] 迭代器已退出。
[Iterator] 迭代器检测到取消。原因: 方法参数
[Consumer] 枚举已被取消。
=== 测试2: 先取消 WithCancellation ===
[Iterator] 生成数字: 0
[Consumer] 接收到数字: 0
[Iterator] 生成数字: 1
[Consumer] 接收到数字: 1
[Trigger] 已取消 ctsWith (WithCancellation)
[Iterator] 生成数字: 2
[Consumer] 接收到数字: 2
[Trigger] 已取消 ctsWith (WithCancellation)
[Iterator] 迭代器已退出。
[Iterator] 迭代器检测到取消。原因: WithCancellation
[Consumer] 枚举已被取消。
演示结束。
解释:
测试1:先取消方法参数 (
ctsParam)- 在第3秒时,
ctsParam被取消。 - 迭代器检测到
externalCancellationToken被取消,抛出OperationCanceledException。 - 终止迭代过程,即使
ctsWith还未被取消。
- 在第3秒时,
测试2:先取消
WithCancellation(ctsWith)- 在第3秒时,
ctsWith被取消。 - 迭代器检测到
cancellationToken被取消,抛出OperationCanceledException。 - 终止迭代过程,即使
ctsParam还未被取消。
- 在第3秒时,
关键点:
独立生效:无论是通过方法参数传递的
CancellationToken还是通过WithCancellation传递的CancellationToken,只要其中一个被取消,迭代器就会响应取消请求并终止迭代。取消顺序无关紧要:不论先取消哪一个取消令牌,迭代器都会正确响应取消请求。取消操作的顺序不会影响最终的效果。
总结
通过上述示例,我们深入了解了 [EnumeratorCancellation] 的必要性及其在异步迭代器中的核心作用。简要回顾:
消除警告:使用
[EnumeratorCancellation]可以消除 Visual Studio 提示的警告,确保取消请求能够正确传递给异步迭代器方法。职责分离:它实现了生产者与消费者的职责分离,使生产者专注于数据生成,消费者控制取消逻辑,从而提升代码的可维护性和可复用性。
灵活的取消机制:即使同时传递多个取消令牌,只要任意一个被取消,迭代器就会终止,提供了灵活而强大的取消控制能力。
.NET 的这些强大功能为开发者提供了极大的便利和灵活性,使得编写高效、可维护的异步代码变得更加轻松与自信。让我们为 .NET 的强大功能自豪,并在实际开发中善加利用这些工具,构建出更优秀的软件解决方案!
为什么需要[EnumeratorCancellation]?的更多相关文章
- C#8.0——异步流(AsyncStream)
异步流(AsyncStream) 原文地址:https://github.com/dotnet/roslyn/blob/master/docs/features/async-streams.md 注意 ...
- 一文说通C#中的异步迭代器
今天来写写C#中的异步迭代器 - 机制.概念和一些好用的特性 迭代器的概念 迭代器的概念在C#中出现的比较早,很多人可能已经比较熟悉了. 通常迭代器会用在一些特定的场景中. 举个例子:有一个for ...
- .NET斗鱼直播弹幕客户端(2021)
.NET斗鱼直播弹幕客户端(2021) 离之前更新的两篇<.NET斗鱼直播弹幕客户端>已经有一段时间,近期有许多客户向我反馈刚好有这方面的需求,但之前的代码不能用了--但网上许多流传的No ...
- 开发进阶:Dotnet Core多路径异步终止
今天用一个简单例子说说异步的多路径终止.我尽可能写得容易理解吧,但今天的内容需要有一定的编程能力. 今天这个话题,来自于最近对gRPC的一些技术研究. 话题本身跟gRPC没有太大关系.应用中,我用 ...
- [gRPC via C#] gRPC本质的探究与实践
鉴于内容过多,先上太长不看版: grpc 就是请求流&响应流特殊一点的 Http 请求,性能和 WebAPI 比起来只快在 Protobuf 上: 附上完整试验代码:GrpcWithOutSD ...
随机推荐
- Ubuntu 16.04 部署Mariadb
默认上MariaDB的包并没有在Ubuntu仓库中.要安装MariaDB,我们要设置MariaDB仓库. sudo apt-get install software-properties-common ...
- equals与hashCode关系梳理
目录 equals用法 hashCode用法 总结 为什么一个类中需要两个比较方法 为什么重写 equals 方法时必须同时重写 hashCode 方法? Reference 这个并不是一个通用性编程 ...
- redux开发中的一个小坑
redux的actiontypes,不可以重名,重名将会报错 When called with an action of type "inserttoken", the slice ...
- k8s网络原理之Calico
什么是Calico: Calico是一个基于BGP的纯三层网络方案,其会为每个容器(pod)分配一个可路由的IP,在通信时不需要解包和拆包,因此网络性能损耗小,易于排查和水平扩展.Calico网络功能 ...
- Linux 上的 AppImage、Snap、Flatpak 之间的区别和联系
AppImage.Snap 和 Flatpak 是三种用于在 Linux 系统上分发和安装软件的包管理格式.它们都有助于解决软件依赖问题,使得应用程序可以在不同的 Linux 发行版上更容易地安装和运 ...
- idea 的Tomcat 的简单配置
不限速网盘下载: https://kohler.lanzouv.com/iSSfc0akw3vc 官网下载: https://tomcat.apache.org/download-80.cgi 正常解 ...
- spm 一阶分析的Microtime onset应该如何填写?
1. 如果对数据进行了slice timing, 那么在进行一阶分析时应该修改microtime onset和 microtime resolution这两个参数, 假设数据的slice order= ...
- Java读取寄存器数据的方法
在Java中直接读取硬件寄存器(如CPU寄存器.I/O端口等)通常不是一个直接的任务,因为Java设计之初就是为了跨平台的安全性和易用性,它并不直接提供访问底层硬件的API.不过,在嵌入式系统.工业控 ...
- Hadoop & Redis未授权漏洞实战——Vulfocus服务攻防
什么是未授权访问漏洞?Hadoop & Redis靶场实战--Vulfocus服务攻防 一.介绍 未授权访问,也称为未经授权的访问或非法访问,是指在没有得到适当权限或授权的情况下,个人或系统访 ...
- 基于语义增强的少样本检测,突破新类别偏见 | ICIP'24
Few-shot目标检测(FSOD)旨在在有限标注实例的情况下检测新颖对象,在近年取得了显著进展.然而,现有方法仍然存在偏见表示问题,特别是在极低标注情况下的新颖类别.在微调过程中,一种新颖类别可能会 ...