SciTech-Mathmatics-Probability+Statistics: The Scientific Method科学研究方法 & Engineering Design工程 + Population VS Sampling(Hypothesis of Parameters) + Likelyhood VS Probability(Model of Solid Parameters)
SciTech-Mathmatics-Probability+Statistics: Differences:
The Scientific Method & Engineering Design
Population Vs Sample
Statistics and Statistical Observation
![]()
11.
![]()
12.
![]()
13.
![]()
14.
![]()
15.
Likelyhood VS Probability
Process·Outcome ·Experiment · Hypothesis · Testing · Parameters ·Probability ·Distribution
Likelyhood => one Parameter of a Model
Probability => one Outcome of a Process
- “抛硬币模型”,第一步,只能确定“Only two kinds of outcome”:
只能“判断”这类“Experiment”应当 ~ b(n, p)“Bernoulli Distribution”。
但是“硬币”被证实是“fair coin”之前,参数p(probability of head) 是“待检验(校准)”的。 - Likelyhood 的 testing hypothesis 阶段:
找到“一堆硬币”,要一个个的“检验”得到其为“fair coin”的 Likelyhood (通过大量试验).
并通过试验可以确定每一个硬币的p(head); - Probability游戏阶段:
"Subjective Judgement and Decision-Making" 选用那一枚 "coin" 进行 "Game";
"选用方":- 已经确定 "抛硬币" 的 "process" 只有两种 "outcome" 时, 作为 "experiment".
- 选用“检验过”的硬币\(\large C_x\) 后,"Game" 的 Probability 及 Distribution 为 \(\large b(n, p_x)\) 就可用来预测。
Likelyhood 阶段
如何检验(校准):只能通过“Scientific Method”检验.
对于“硬币”的“检验(校准)”:
- 在experiment 之前,根据“经验或判断”给出的是 Prior Probability.
- 只能先拿到“sample data”of “experiments”;
预先抛100次或更多,通过观察“number of head ”;
计算“真实试验概率”假如 100次 只有 17次,则 p(heads) = 0.17
这个 0.17 是 Posterior( 真实的 “sample data”和真实 “experiments”得到的), - 根据实际“experiment”和 “sample data”判断“fair coin”的假设。
如果 Hypothesis 的 Posterior 与 Prior 两概率的Variance(偏差) 过大;则换硬币。
如果 Hypothesis 的 Posterior 与 Prior 两概率的Variance(偏差)在允许范围,则检验通过。 - 在一堆硬币经过“检验”后,每一枚硬币的 Parameter 都可以得到;
例如 3 枚硬币,C1的p 为0.4, C2的p 为0.5, C3的p 为0.6;
至于何时选用 C1, C2, C3 进行下一阶段的“Probability Game”由人自主决定。
Probability 阶段
“fair coin”已经检验完成,即 “process”到“experiment”, 再到确定好 b(n,p)的 Parameter p;
假设“检验过”3 枚硬币,C1的p 为0.4, C2的p 为0.5, C3的p 为0.6;
- 选用 C3, head 出现的概率要大,而且 p(head) = 0.6
- 选用 C1, head 出现的概率要小,而且 p (head) = 0.4
- 选用 C2, head 与 tail 概率等同,即 p (head) = 0.5, 这是一枚真实的 fair coin.
即 Empirical Probability是通过“人为布局设计”可“操控”的;
而 Theoritical Probability是理论“Equally likely outcomes”
对 Subjective Probability是主观根据“belief”和“information of process”给出“judgement”.
Likelyhood VS Probability
Likelihood vs. Probability: What's the Difference?
BY ZACH BOBBITTPOSTED ON AUGUST 18, 2021
Two terms that students often confuse in statistics are likelihood and probability.
Here's the difference in a nutshell:
Probability refers to the chance that a particular outcome occurs based on the values of parameters in a model.
Likelihood refers to how well a sample provides support for particular values of a parameter in a model.
- When calculating the probability of some outcome, we assume the parameters in a model** are trustworthy, and the sample data can well represent corresponding population.
- However, when we calculate likelihood we're trying to determine if we can trust the parameters in a model based on the sample data that we've observed, furthermore if we can trust the sample data.
The following examples illustrate the difference between probability and likelihood in various scenarios.
Example 1: Likelihood vs. Probability in Coin Tosses
Suppose we have a coin that is assumed to be fair. If we flip the coin one time, the probability that it will land on heads is 0.5.
Now suppose we flip the coin 100 times and it only lands on heads 17 times. We would say that the likelihood that the coin is fair is quite low. If the coin was actually fair, we would expect it to land on heads much more often.
When calculating the probability of a coin landing on heads, we simply assume that P(heads) = 0.5 on a given toss.
However, when calculating the likelihood we're trying to determine if the model parameter (p = 0.5) is actually correctly specified.
In the example above, a coin landing on heads only 17 out of 100 times makes us highly suspicious that the truly probability of the coin landing on heads on a given toss is actually p = 0.5.
Example 2: Likelihood vs. Probability in Spinners
Suppose we have a spinner split into thirds with three colors on it: red, green, and blue. Suppose we assume that it’s equally likely for the spinner to land on any of the three colors.
If we spin it one time, the probability that it lands on red is 1/3.
Now suppose we spin it 100 times and it lands on red 2 times, green 90 times, and blue 8 times. We would say that the likelihood that the spinner is actually equally likely to land on each color is very low.
When calculating the probability of the spinner landing on red, we simply assume that P(red) = 1/3 on a given spin.
However, when calculating the likelihood we're trying to determine if the model parameters (P(red) = 1/3, P(green) = 1/3, P(blue) = 1/3) are actually correctly specified.
In the example above, the results of the 100 spins make us highly suspicious that each color is equally likely to occur.
SciTech-Mathmatics-Probability+Statistics: The Scientific Method科学研究方法 & Engineering Design工程 + Population VS Sampling(Hypothesis of Parameters) + Likelyhood VS Probability(Model of Solid Parameters)的更多相关文章
- Factory Method 工厂方法模式
Factory method工厂方法模式是一种实现了“工厂”概念的面向对象设计模式.就像其他创建型模式一样,它也是处理在不指定对象具体类型的情况下创建对象的问题.工厂方法模式的实质是“定义一个创建对象 ...
- (转)Java.lang.reflect.Method invoke方法 实例
背景:今天在项目中用到Method 的invoke方法,但是并不理解,查完才知道,原来如此! import java.lang.reflect.Method; /** * Java.lang.refl ...
- java.lang.reflect.Method.getAnnotation()方法示例【通过反射获取到方法对象再获取方法对象上的注解信息】
转: java.lang.reflect.Method.getAnnotation()方法示例 java.lang.reflect.Method.getAnnotation(Class <T&g ...
- java.lang.reflect.Method.getAnnotation()方法示例
转: java.lang.reflect.Method.getAnnotation()方法示例 作者: 初生不惑 Java技术QQ群:227270512 / Linux QQ群:479429477 ...
- 错误:Attempt to resolve method: [XXX方法] on undefined variable or class name: [XXX类]的解决(IDEA打包jar问题)
问题: 使用JMeter调用jar包的时候,报错误信息Typed variable declaration : Attempt to resolve method:[XXX方法] on undefin ...
- Probability&Statistics 概率论与数理统计(1)
基本概念 样本空间: 随机试验E的所有可能结果组成的集合, 为E的样本空间, 记为S 随机事件: E的样本空间S的子集为E的随机事件, 简称事件, 由一个样本点组成的单点集, 称为基本事件 对立事件/ ...
- 如何选题?| 什么样的科学问题 | 研究项目才是有意义的?| scientific method
搞科研,尤其是生命科学,经常会觉得自己做的东西是坨屎,没有任何意义. 在硕博的时候这种感觉会非常强烈,一个是自己思考能力不足:二是你的项目不是你设计的,不懂个中缘由,只执行的话就会很无聊,找不到意义感 ...
- C#面向对象设计模式纵横谈——5.Factory Method 工厂方法模式(创建型模式)
动机 (Motivation) 在软件系统中,经常面临着“某个对象”的创建工作; 由于需求的变化,这个对象经常面临着剧烈的变化,但是它却拥有比较稳定的接口. 如何应对这种变化?如何提供一种“封装机制” ...
- Struts2 Action下面的Method调用方法
1. 在struts.xml中加入<constant name="struts.enable.DynamicMethodInvocation" value="tru ...
- Method Swizzling (方法调配)
Method Swizzling是改变一个selector的实际实现的技术.通过这一技术,我们可以在运行时通过修改类的分发表中selector对应的函数,来修改方法的实现. 例如,我们想跟踪在程序中每 ...
随机推荐
- Mybatis 框架课程第三天
目录 1 Mybatis连接池与事务深入 1.1 Mybatis的连接池技术 1.1.1 Mybatis连接池的分类 1.1.2 Mybatis中数据源的配置 1.2 Mybatis 的事务控制 1. ...
- jsp 输入out.println()报错
jsp 输入out.println()报错,输入out.后没有代码提示,println()报红. 可以看看有没有导包jsp-api. <dependency> <groupId> ...
- MFC窗口闪烁问题
本文引自:<VC窗口闪烁问题的解决> 概述 一般的windows复杂的界面需要使用多层窗口而且要用贴图来美化,所以不可避免在窗口移动或者改变大小时候出现闪烁. 闪烁产生的原因 原因一: 如 ...
- (Pytorch第二天)CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.
我在cmd里执行conda active,是没有问题的,但是在powershell里会报标题的错 按照各种提示以及查的资料,都说执行conda init 或者conda init cmd.exe等诸如 ...
- RabbitMQ学习笔记【长更】
文章发表在了我的博客上:https://blog.ysboke.cn/archives/64.html 一.MQ作用 就仨:异步.削峰.解耦 1.任务异步处理 将不需要同步处理的并且耗时长的操作由消息 ...
- Win32汇编学习笔记03.RadAsm和补丁
https://bpsend.net/thread-163-1-1.html 补丁 扫雷游戏啊下补丁 在扫雷游戏中,点关闭弹出一个确认框,确认之后再关闭,取消就不关闭 首先第一步就是确认关闭按钮响应的 ...
- ODOO产品介绍
自己整理的odoo15产品介绍资料,内容供参考,需要ppt的请联系: 欢迎技术交流.项目合作 !
- AtCoder Beginner Contest 381-E
AtCoder Beginner Contest 381-E Problem 一个长度为奇数.最中间的那个字符是 /.左边所有字符都是都是 1.右边所有字符都是 2 的字符串被称为11/22 字符串. ...
- 【C语言/C++】你知道线程安全代码到底是怎么编写的吗?
相信有很多同学在面对多线程代码时都会望而生畏,认为多线程代码就像一头难以驯服的怪兽,你制服不了这头怪兽它就会反过来吞噬你. 夸张了哈,总之,多线程程序有时就像一潭淤泥,走不进去退不出来. 可这是为什么 ...
- 国贸股份 x 袋鼠云:推进全链业务深度数字化,为产业综合服务插上数字化翅膀
数据治理是推动大型集团企业转型升级.提升竞争优势.实现高质量发展的重要引擎.通过全链数据结构化,实现业务对象.业务规则.业务流程数字化,推进全链业务深度数字化,夯实数据运营底座. 厦门国贸集团股份有限 ...