ADMM——交替方向乘子法
ADMM(Alternating Direction Method of Multipliers,交替方向乘子法)是一种优化算法,主要用于解决分布式、大规模和非光滑的凸优化问题。ADMM通过将原始问题分解为多个易于处理的子问题来实现优化。它结合了两种经典优化方法:梯度下降法(gradient descent)和拉格朗日乘子法(Lagrangian multiplier method)。
ADMM
算法
ADMM考虑如下形式的凸优化问题:
其中$x$和$z$是优化变量,$f(x)$和$g(z)$是凸函数,$A,B,c$是已知的系数矩阵与向量。为了解决这个问题,首先引入拉格朗日乘子$y\in R$,构造增广拉格朗日函数$L(x, z, y)$:
$\displaystyle L(x, z, y) = f(x) + g(z) + y^T(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||^2$
其中$\rho > 0$是一个超参数,定义算法迭代步伐。相较于普通拉格朗日函数,增广拉格朗日函数多了二范数约束,能更好地处理约束条件并加速算法的收敛。
ADMM算法通过以下迭代步骤进行优化直到收敛:
1、更新$x$:$x^{k+1} = \text{arg}\min\limits_x L(x, z^k, y^k)$
2、更新$z$:$z^{k+1} = \text{arg}\min\limits_z L(x^{k+1}, z, y^k)$
3、更新$y$:$y^{k+1} = y^k + \rho(Ax^{k+1} + Bz^{k+1} - c)$
收敛条件如:$\|x^{k+1}-x^{k}\|$与$\|z^{k+1}-z^{k}\|$小于一定阈值。
为什么可以优化到最小值
ADMM的收敛性可以从两个方面来理解:
可分离性:在ADMM的迭代过程中,$x$和$z$的优化问题是分开进行的。这意味着我们可以独立地解决$f(x)$和$g(z)$的优化问题。在每一步迭代中,我们都在尝试最小化原始问题的目标函数。
拉格朗日乘子法的收敛性:拉格朗日乘子法的目标是找到满足原始问题约束条件的最优解。在ADMM的迭代过程中,通过调整拉格朗日乘子$y$来强化原始问题的约束条件,从而保证算法在全局范围内收敛到满足约束条件的可行解。
综上所述,ADMM算法可以在全局范围内收敛到原始优化问题的最小值,因为它能够在每次迭代中分别优化目标函数,并逐渐强化约束条件。
直观理解:如果满足约束条件,迭代的前两步总是会使$f(x)$与$g(z)$变小,而第3步只是更新$y$,因此总体的迭代过程是单向让原始优化问题$f(x)+g(z)$变小的。而一旦约束不满足,第3步对$y$的更新就是约束对的前两步更新的反抗。如果前两步更新使约束不满足,那么在第3步$y$就会更新,使约束在下一次迭代的前两步产生相应的梯度。
参考: https://blog.csdn.net/weixin_44655342/article/details/121899501
ADMM——交替方向乘子法的更多相关文章
- 交替方向乘子法(ADMM)
交替方向乘子法(ADMM) 参考1 参考2 经典的ADMM算法适用于求解如下2-block的凸优化问题( 是最优值,令 表示一组最优解): Block指我们可以将决策域分块,分成两组变量, 这里面 都 ...
- 交替方向乘子法(ADMM)的原理和流程的白话总结
交替方向乘子法(ADMM)的原理和流程的白话总结 2018年08月27日 14:26:42 qauchangqingwei 阅读数 19925更多 分类专栏: 图像处理 作者:大大大的v链接:ht ...
- 交替方向乘子法(Alternating Direction Multiplier Method,ADMM)
交替方向乘子法(Alternating Direction Multiplier Method,ADMM)是一种求解具有可分结构的凸优化问题的重要方法,其最早由Gabay和Mercier于1967年提 ...
- 对偶上升法到增广拉格朗日乘子法到ADMM
对偶上升法 增广拉格朗日乘子法 ADMM 交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种解决可分解凸优化问题的简单方法,尤其在 ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
- 装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...
- 拉格朗日乘子法&KKT条件
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前 ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
随机推荐
- 关于人工智能的思考,写在chatGPT爆火之时
今天是2023年3月22日,今天思维比较活跃,故作文一篇,以记录当下所想. 先是回家询问了未婚妻的想法,然后记录自己的想法. 未婚妻的想法: 1.在AI领域已经滞后于世界了.因为在墙头上看到过一个加拿 ...
- js玩儿爬虫
前言 提到爬虫可能大多都会想到python,其实爬虫的实现并不限制任何语言. 下面我们就使用js来实现,后端为express,前端为vue3. 实现功能 话不多说,先看结果: 这是项目链接:https ...
- 【YashanDB知识库】YAS-00103 no free block in dictionary cache
[问题分类]功能使用 [关键字]YAS-00103,no free block in dictionary cache [问题描述]执行union all 太多子查询导致报错,例子如下: [问题原因分 ...
- 音视频 SDK |合理配置视频参数,提升使用质量
一.前言 在视频通话或直播时,开发者可以根据需要指定推流和拉流视频相关配置,如视频采集分辨率.视频编码输出分辨率.视频帧率.码率.视图模式和镜像模式. 设置合适的视频分辨率.帧率和码率可以在音视频场景 ...
- CIIS 2023 丨聚焦文档图像处理前沿领域,合合信息 AI 助力图像处理与内容安全保障
近日,2023第十二届中国智能产业高峰论坛(CIIS 2023)在江西南昌顺利举行.大会由中国人工智能学会.江西省科学技术厅.南昌市人民政府主办,南昌市科学技术局.中国工程科技发展战略江西研究院承办. ...
- CSIG企业行-走进合合信息成功举行,聚焦生成式人工智能、智能文档处理前沿热点
3月18日,由中国图象图形学学会(CSIG)主办,合合信息.CSIG文档图像分析与识别专业委员会联合承办的"CSIG企业行"系列活动成功举办.此次活动以"图文智能处理与多 ...
- Azure 学习笔记
选择 VM 配套 https://docs.azure.cn/zh-cn/virtual-machines/sizes https://docs.azure.cn/zh-cn/virtual-mac ...
- Figma 学习笔记 – Scroll and Position Fixed
Scroll Scroll 属于 prototype 的一部分. 当一个 Frame 的内容超出 Frame 的高度或宽度时, Frame 就具备了 scroll 的能力. 通过 uncheck cl ...
- DLA:动态层级注意力架构,实现特征图的持续动态刷新与交互 | IJCAI'24
论文深入探讨了层级注意力与一般注意力机制之间的区别,并指出现有的层级注意力方法是在静态特征图上实现层间交互的.这些静态层级注意力方法限制了层间上下文特征提取的能力.为了恢复注意力机制的动态上下文表示能 ...
- Outlook无法接收发送邮件,报错超出最大空间 的解决办法
事件起因: 某客户的outlook邮箱无法接收/发送邮件,报错为:存储区已达到最大大小 解决办法: 解决思路:新建一个数据文件来接收发送邮件 具体操作: 文件-账户配置-数据文件-新建(更 ...