ADMM——交替方向乘子法
ADMM(Alternating Direction Method of Multipliers,交替方向乘子法)是一种优化算法,主要用于解决分布式、大规模和非光滑的凸优化问题。ADMM通过将原始问题分解为多个易于处理的子问题来实现优化。它结合了两种经典优化方法:梯度下降法(gradient descent)和拉格朗日乘子法(Lagrangian multiplier method)。
ADMM
算法
ADMM考虑如下形式的凸优化问题:
其中$x$和$z$是优化变量,$f(x)$和$g(z)$是凸函数,$A,B,c$是已知的系数矩阵与向量。为了解决这个问题,首先引入拉格朗日乘子$y\in R$,构造增广拉格朗日函数$L(x, z, y)$:
$\displaystyle L(x, z, y) = f(x) + g(z) + y^T(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||^2$
其中$\rho > 0$是一个超参数,定义算法迭代步伐。相较于普通拉格朗日函数,增广拉格朗日函数多了二范数约束,能更好地处理约束条件并加速算法的收敛。
ADMM算法通过以下迭代步骤进行优化直到收敛:
1、更新$x$:$x^{k+1} = \text{arg}\min\limits_x L(x, z^k, y^k)$
2、更新$z$:$z^{k+1} = \text{arg}\min\limits_z L(x^{k+1}, z, y^k)$
3、更新$y$:$y^{k+1} = y^k + \rho(Ax^{k+1} + Bz^{k+1} - c)$
收敛条件如:$\|x^{k+1}-x^{k}\|$与$\|z^{k+1}-z^{k}\|$小于一定阈值。
为什么可以优化到最小值
ADMM的收敛性可以从两个方面来理解:
可分离性:在ADMM的迭代过程中,$x$和$z$的优化问题是分开进行的。这意味着我们可以独立地解决$f(x)$和$g(z)$的优化问题。在每一步迭代中,我们都在尝试最小化原始问题的目标函数。
拉格朗日乘子法的收敛性:拉格朗日乘子法的目标是找到满足原始问题约束条件的最优解。在ADMM的迭代过程中,通过调整拉格朗日乘子$y$来强化原始问题的约束条件,从而保证算法在全局范围内收敛到满足约束条件的可行解。
综上所述,ADMM算法可以在全局范围内收敛到原始优化问题的最小值,因为它能够在每次迭代中分别优化目标函数,并逐渐强化约束条件。
直观理解:如果满足约束条件,迭代的前两步总是会使$f(x)$与$g(z)$变小,而第3步只是更新$y$,因此总体的迭代过程是单向让原始优化问题$f(x)+g(z)$变小的。而一旦约束不满足,第3步对$y$的更新就是约束对的前两步更新的反抗。如果前两步更新使约束不满足,那么在第3步$y$就会更新,使约束在下一次迭代的前两步产生相应的梯度。
参考: https://blog.csdn.net/weixin_44655342/article/details/121899501
ADMM——交替方向乘子法的更多相关文章
- 交替方向乘子法(ADMM)
交替方向乘子法(ADMM) 参考1 参考2 经典的ADMM算法适用于求解如下2-block的凸优化问题( 是最优值,令 表示一组最优解): Block指我们可以将决策域分块,分成两组变量, 这里面 都 ...
- 交替方向乘子法(ADMM)的原理和流程的白话总结
交替方向乘子法(ADMM)的原理和流程的白话总结 2018年08月27日 14:26:42 qauchangqingwei 阅读数 19925更多 分类专栏: 图像处理 作者:大大大的v链接:ht ...
- 交替方向乘子法(Alternating Direction Multiplier Method,ADMM)
交替方向乘子法(Alternating Direction Multiplier Method,ADMM)是一种求解具有可分结构的凸优化问题的重要方法,其最早由Gabay和Mercier于1967年提 ...
- 对偶上升法到增广拉格朗日乘子法到ADMM
对偶上升法 增广拉格朗日乘子法 ADMM 交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种解决可分解凸优化问题的简单方法,尤其在 ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
- 装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...
- 拉格朗日乘子法&KKT条件
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前 ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
随机推荐
- 安卓系统使用chrome插件(以yandex安装油猴为例)
以tampermonkey为代表的Chrome插件广受好评,但由于Chrome在安卓系统并不支持令人遗憾.所以带来安卓手机使用Chrome插件的教程. 一,首先下载安卓开源浏览器(个人推荐yandex ...
- 如何排查线上w3wp.exe CPU高的问题,使用到了WinDbg、Visual studio来分析IIS进程池的.dmp文件
最近发现服务器上某个web站点老是CPU很高,该站点部署在IIS上,我IIS上有多个站点,每个站点一个进程池,每个进程池取名都是根据站点来取的,所以很容易看出哪个站点吃掉的CPU,该站点已运行十几年, ...
- 手写一个Promise.all
Promise.all 特性: 1. 按顺序返回结果数组; 2. 当所有promise完成才返回; 3. 返回第一个报错的promise的信息; 直接上代码: Promise._all = funct ...
- 物体检测序列之一:ap, map
准确率(Precision),也叫正确预测率(positive predictive value),在模式识别.信息检索.机器学习等研究应用领域,准确率用来衡量模型预测的结果中相关或者正确的比例.而召 ...
- 掌握 C++17:结构化绑定与拷贝消除的妙用
C++17 特性示例 1. 结构化绑定(Structured Binding) 结构化绑定允许你用一个对象的元素或成员同时实例化多个实体. 结构化绑定允许你在声明变量的同时解构一个复合类型的数据结构( ...
- T2 的莫反式子
正在实现,不知道对不对,但是先放这,哪个大佬发现问题了和我说下 设 \[f(l)=\sum\cdots\sum[\gcd=1,\text{lcm}=l] \] \[g(l)=\sum\cdots\su ...
- Java中浮点数运算存在的精度问题以及解决方法
观察以下一段代码,相信小朋友都可以一眼看出答案,但是计算机给出的答案是这样吗? public class TestDouble { public static void main(String arg ...
- 全网最适合入门的面向对象编程教程:53 Python 字符串与序列化-字符串与字符编码
全网最适合入门的面向对象编程教程:53 Python 字符串与序列化-字符串与字符编码 摘要: 在 Python 中,字符串是文本的表示,默认使用 Unicode 编码,这允许你处理各种字符集,字符编 ...
- war3辅助代码及运行方式
打开VS2019 点这个 自动生成这么一堆代码,全删了,就剩这些就行 然后点这里 然后向CPP里粘贴以下代码 #include "tlhelp32.h" HANDLE hwnd = ...
- 浏览器中生成 OSS 令牌 | Web Crypto API
笔者写文章的时候,都会把图片通过自己搭建的一个简单站点 https://imgbed.sugarat.top/ 把图片上传到各种云的对象存储服务(OSS)上. 然后通过CDN访问,保证图片有可靠的访问 ...