bzoj千题计划191:bzoj2337: [HNOI2011]XOR和路径
http://www.lydsy.com/JudgeOnline/problem.php?id=2337
概率不能异或
但根据期望的线性,可以计算出每一位为1的概率,再累积他们的期望
枚举每一位i,现在要计算从1出发第i位异或和为1的概率
令f[u]表示从点u出发,第i为为1的概率
d[u]表示u的度数
枚举与u相连的v
若边权的第i位为1,那么v的第i位为0,f[u]+=(1-f[v])/d[u]
若边权的第i位为0,那么v的第i位为1,f[u]+=f[v]/d[u]
还有一个f[n]=0
将这n个式子,f[i]看做未知数,1/d[i]看做系数
把f[i]都移到左边,1/d 都移到右边
得到n个方程,高斯消元解出来
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define N 101
#define M 10001 const double eps=1e-; int n; int d[N];
int to[M<<],nxt[M<<],front[N],val[M<<],tot; double a[N][N]; int bit[]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; val[tot]=w;
} void gauss()
{
int r;
double f;
for(int i=;i<n;++i)
{
r=i;
for(int j=i+;j<n;++j)
if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) swap(a[r],a[i]);
for(int k=i+;k<n;++k)
{
f=a[k][i]/a[i][i];
for(int j=i;j<=n;++j) a[k][j]-=f*a[i][j];
}
}
for(int i=n-;i>=;--i)
{
for(int j=i+;j<n;++j) a[i][n]-=a[j][n]*a[i][j];
a[i][n]/=a[i][i];
}
} int main()
{
int m;
read(n); read(m);
int x,y,w;
while(m--)
{
read(x); read(y); read(w);
add(x,y,w),d[y]++;
if(x!=y) add(y,x,w),d[x]++;
}
bit[]=;
for(int i=;i<;++i) bit[i]=bit[i-]<<;
double ans=;
for(int i=;i<;++i)
{
memset(a,,sizeof(a));
for(int j=;j<n;++j)
{
a[j-][j-]=;
for(int k=front[j];k;k=nxt[k])
if(val[k]&bit[i])
{
a[j-][to[k]-]+=1.0/d[j];
a[j-][n]+=1.0/d[j];
}
else a[j-][to[k]-]-=1.0/d[j];
}
a[n-][n-]=;
gauss();
ans+=a[][n]*bit[i];
}
printf("%.3lf",ans);
}
bzoj千题计划191:bzoj2337: [HNOI2011]XOR和路径的更多相关文章
- bzoj千题计划248:bzoj3697: 采药人的路径
http://www.lydsy.com/JudgeOnline/problem.php?id=3697 点分治 路径0改为路径-1 g[i][0/1] 和 f[i][0/1]分别表示当前子树 和 已 ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划222:bzoj2329: [HNOI2011]括号修复(fhq treap)
http://www.lydsy.com/JudgeOnline/problem.php?id=2329 需要改变的括号序列一定长这样 :)))((( 最少改变次数= 多余的‘)’/2 [上取整] + ...
- bzoj千题计划194:bzoj2115: [Wc2011] Xor
http://www.lydsy.com/JudgeOnline/problem.php?id=2115 边和点可以重复经过,那最后的路径一定是从1到n的一条路径加上许多环 dfs出任意一条路径的异或 ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
随机推荐
- LeetCode Letter Combinations of a Phone Number (DFS)
题意 Given a digit string, return all possible letter combinations that the number could represent. A ...
- Java中的Calendar日历用法详解
第一部分 Calendar介绍 public abstract class Calendar implements Serializable, Cloneable, Comparable<Cal ...
- 【开源.NET】 轻量级内容管理框架Grissom.CMS(第二篇前后端交互数据结构分析)
这是 CMS 框架系列文章的第二篇,第一篇开源了该框架的代码和简要介绍了框架的目的.作用和思想,这篇主要解析如何把sql 转成标准 xml 配置文件和把前端post的增删改数据规范成方便后台解析的结构 ...
- 红黑树插入与删除完整代码(dart语言实现)
之前分析了红黑树的删除,这里附上红黑树的完整版代码,包括查找.插入.删除等.删除后修复实现了两种算法,均比之前的更为简洁.一种是我自己的实现,代码非常简洁,行数更少:一种是Linux.Java等源码版 ...
- 3月web前端面试小结
说一下box-sizing的应用场景 box-sizing的属性值分为两个,border-box和content-box,其中, border-box:width=content+padding+bo ...
- FASIC: A Fast-recovery, Adaptively Spanning In-band Control Plane in Software-Defined Network
2017 IEEE Global Communications Conference 问题:in-band网络中如果物理链路阻塞或者硬件故障,导致控制器的消息不能及时到达各个交换机导致网络不一致甚至某 ...
- 项目复审——Beta阶段
排名原则还是基于这个组到底自己做了多少东西,又借鉴了多少东西,不过其他组的具体情况我也不一定说的清楚,所以只是通过大家的码云和一些了解来评判的.当然,是否发布也是一个重要指标.顺便感叹一句,现在的云平 ...
- HBase集成(准备篇)
HBase与Hadoop各版本对照表:http://hbase.apache.org/book.html#configuration Hadoop 2.7.1+ 对应HBase 1.2.X,1.3.X ...
- Linux命令学习chroot和chmode
chroot:chang root http://man.linuxde.net/chroot https://baike.baidu.com/item/chroot 1.限制被CHROOT的使用者所 ...
- shareSDK.js web版的使用
自定义将要分享的内容 <!--MOB SHARE BEGIN--> <div class="-mob-share-open">分享</div> ...