http://www.lydsy.com/JudgeOnline/problem.php?id=3129

如果没有Ai的限制,就是隔板法,C(m-1,n-1)

>=Ai 的限制:m减去Ai

<=Ai 的限制:容斥原理,总数- 至少有一个数>Ai + 至少有两个数>Ai - ……

计算组合数取模,模数虽然很大也不是质数,但是质因数分解后 最大的才 10201,所以用扩展卢卡斯即可

注意在用扩展卢卡斯计算 阶乘的时候,要预处理 不包含当前质因子的阶乘,否则会TLE 3个点

#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; LL p; int up[],down[]; int num;
int PI[],PK[]; LL fac[]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void pre()
{
LL t=p;
for(LL i=;i*i<=p;++i)
if(!(t%i))
{
PI[++num]=i;
PK[num]=;
while(!(t%i)) t/=i,PK[num]*=i;
}
if(t>)
{
PI[++num]=t;
PK[num]=t;
}
} LL Pow(LL a,LL b,LL mod)
{
LL res=;
for(;b;b>>=,a=a*a%mod)
if(b&) res=res*a%mod;
return res;
} void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) { x=; y=; return; }
exgcd(b,a%b,y,x); y-=a/b*x;
} LL get_inv(LL a,LL b)
{
LL x,y;
exgcd(a,b,x,y);
x=(x%b+b)%b;
return x;
} LL get_fac(int n,LL pk,LL pi)
{
if(!n) return ;
LL ans=;
if(n/pk) ans=Pow(fac[pk],n/pk,pk);
ans=ans*fac[n%pk]%pk;
return ans*get_fac(n/pi,pk,pi)%pk;
} LL exlucas(int n,int m,LL pk,LL pi)
{
fac[]=;
for(int i=;i<=pk;++i)
{
fac[i]=fac[i-];
if(i%pi) fac[i]=fac[i]*i%pk;
}
LL fn=get_fac(n,pk,pi);
LL fm=get_fac(m,pk,pi);
LL fnm=get_fac(n-m,pk,pi);
LL k=;
for(int i=n;i;i/=pi) k+=i/pi;
for(int i=m;i;i/=pi) k-=i/pi;
for(int i=n-m;i;i/=pi) k-=i/pi;
LL ans=fn*get_inv(fm,pk)%pk*get_inv(fnm,pk)%pk*Pow(pi,k,pk)%pk;
return ans*(p/pk)%p*get_inv(p/pk,pk)%p;
} LL get_C(int n,int m)
{
if(n<m) return ;
LL ans=;
LL pk;
for(int i=;i<=num;++i)
ans=(ans+exlucas(n,m,PK[i],PI[i]))%p;
return ans;
} int main()
{
freopen("equation.in","r",stdin);
freopen("equation.out","w",stdout);
int T;
read(T); read(p);
pre();
int n,n1,n2,m;
int mm,t;
LL ans=;
while(T--)
{
read(n); read(n1); read(n2); read(m);
for(int i=;i<=n1;++i) read(up[i]);
for(int i=;i<=n2;++i) read(down[i]);
for(int i=;i<=n2;++i) m-=down[i]-;
ans=;
for(int i=;i<(<<n1);++i)
{
mm=m;
t=;
for(int j=;j<=n1;++j)
if(i&(<<j-)) mm-=up[j],++t;
t=(t&) ? - : ;
ans=(ans+t*get_C(mm-,n-)+p)%p;
}
cout<<ans<<'\n';
}
}

3129: [Sdoi2013]方程

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 646  Solved: 375
[Submit][Status][Discuss]

Description

给定方程
    X1+X2+. +Xn=M
我们对第l..N1个变量进行一些限制:
Xl < = A
X2 < = A2
Xn1 < = An1
我们对第n1 + 1..n1+n2个变量进行一些限制:
Xn1+l > = An1+1
Xn1+2 > = An1+2
Xnl+n2 > = Anl+n2
求:在满足这些限制的前提下,该方程正整数解的个数。
答案可能很大,请输出对p取模后的答案,也即答案除以p的余数。

Input

输入含有多组数据,第一行两个正整数T,p。T表示这个测试点内的数据组数,p的含义见题目描述。
    对于每组数据,第一行四个非负整数n,n1,n2,m。
    第二行nl+n2个正整数,表示A1..n1+n2。请注意,如果n1+n2等于0,那么这一行会成为一个空行。

Output

共T行,每行一个正整数表示取模后的答案。

Sample Input

3 10007
3 1 1 6
3 3
3 0 0 5

3 1 1 3
3 3

Sample Output

3
6
0

【样例说明】
对于第一组数据,三组解为(1,3,2),(1,4,1),(2,3,1)
对于第二组数据,六组解为(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)

HINT

n < = 10^9  , n1 < = 8   , n2 < = 8   ,  m < = 10^9  ,p<=437367875

对于l00%的测试数据:  T < = 5,1 < = A1..n1_n2  < = m,n1+n2 < = n

bzoj千题计划267:bzoj3129: [Sdoi2013]方程的更多相关文章

  1. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  2. bzoj千题计划134:bzoj3124: [Sdoi2013]直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...

  3. bzoj千题计划133:bzoj3130: [Sdoi2013]费用流

    http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...

  4. bzoj千题计划268:bzoj3131: [Sdoi2013]淘金

    http://www.lydsy.com/JudgeOnline/problem.php?id=3131 如果已知 s[i]=j 表示有j个<=n数的数码乘积=i 那么就会有 s[a1]*s[a ...

  5. bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器

    http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...

  6. bzoj千题计划258:bzoj3123: [Sdoi2013]森林

    http://www.lydsy.com/JudgeOnline/problem.php?id=3123 启发式合并主席树 #include<cmath> #include<cstd ...

  7. bzoj千题计划196:bzoj4826: [Hnoi2017]影魔

    http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...

  8. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  9. bzoj千题计划177:bzoj1858: [Scoi2010]序列操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...

随机推荐

  1. ROCKETMQ——2主2从集群部署

    1.压缩包准备两台服务器镜像操作cd /optmkdir softcd soft将两个压缩包复制到 soft目录unzip apache-maven-3.2.2-bin.zipunzip rocket ...

  2. idou老师教你学istio :基于角色的访问控制

    istio的授权功能,也称为基于角色的访问控制(RBAC),它为istio服务网格中的服务提供命名空间级别.服务级别和方法级别的访问控制.基于角色的访问控制具有简单易用.灵活和高性能等特性.本文介绍如 ...

  3. A - 摆仙果

    题目描述 Adrian, Bruno与Goran三人参加了仙界的宴会,宴会开始之前先准备了一些仙果供三人品尝,但是仙果的摆放有顺序要求,如果把仙果摆错了位置,仙果就会消失而无法品尝到. 由于三人是第一 ...

  4. VGGNet论文翻译-Very Deep Convolutional Networks for Large-Scale Image Recognition

    Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zi ...

  5. DRF框架获取参数的方式

    DRF获取参数的方式 例如url url(r'^demo/(?P<word>.*)/$', DemoView.as_view()) 在类视图中获取参数 url:http://127.0.0 ...

  6. Android 公共库的建立方法

    本文主要介绍在android工程中如何将共用代码建成公共包方便其他工程引用.引用后的工程结构分析.library引入方式的优缺点. 自己也写了一些android公共的库,有兴趣的可以参考 Trinea ...

  7. android listview addheaderview viewpager

    just set viewPager's onTouchListener,like this: viewPager.setOnTouchListener(new OnTouchListener() { ...

  8. Individual Project Records

    At the midnight of September 20, I finished my individual projcet -- a word frequency program. You c ...

  9. "学霸"系统Alpha版本发布说明

    一.版本功能 我们的软件为学霸app,目标功能为:北航校内学子的类“知乎”应用,可以实现用户的管理.提问.回答.搜索.上传.下载以及交互:当前版本主要实现功能为:用户的管理.提问.回答已经交互. 一下 ...

  10. 《Linux内核设计与实现》读书笔记——第五章

    <Linux内核设计与实现>读书笔记--第五章 标签(空格分隔): 20135321余佳源 第五章 系统调用 操作系统中,内核提供了用户进程与内核进行交互的一组接口.这些接口让应用程序受限 ...