混沌分形之逻辑斯蒂(Logistic)映射系统
前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴。
关于基类FractalEquation的定义及相关软件见:混沌与分形
(1)逻辑斯蒂映射系统
// 逻辑斯蒂映射系统
class LogisticMap : public FractalEquation
{
public:
LogisticMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = 0.0f;
m_ParamB = 4.0f; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = k*outY*(-outY);
}
outY *= ; outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};
调节下参数后的图形:
(2)正弦映射系统
// 正弦映射系统
class SinMap : public FractalEquation
{
public:
SinMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = -*PI;
m_ParamB = *PI; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = k*sinf(outY);
} outY *= 0.5f; outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};
(3)曼德勃罗映射系统
// 曼德勃罗映射系统
class MandelbrotMap : public FractalEquation
{
public:
MandelbrotMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = -2.0f;
m_ParamB = 0.0f; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = outY*outY + k;
} outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};
最后发下被我同事当成MM的逻辑斯蒂分岔图像:
之前我还写过一篇关于逻辑斯蒂的文章:混沌数学之logistic模型
混沌分形之逻辑斯蒂(Logistic)映射系统的更多相关文章
- 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)
原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- python机器学习实现逻辑斯蒂回归
逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的 ...
- 【分类器】感知机+线性回归+逻辑斯蒂回归+softmax回归
一.感知机 详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735 1.模型和图像: 2.数学定义推导和优化: 3.流程 ...
- spark机器学习从0到1逻辑斯蒂回归之(四)
逻辑斯蒂回归 一.概念 逻辑斯蒂回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型.logistic回归的因变量可以是二分类的,也可以是多分类的.logis ...
- [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...
- 【项目实战】pytorch实现逻辑斯蒂回归
视频指导:https://www.bilibili.com/video/BV1Y7411d7Ys?p=6 一些数据集 在pytorch框架下,里面面有配套的数据集,pytorch里面有一个torchv ...
- 逻辑斯蒂(logistic)回归深入理解、阐述与实现
第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的 ...
- 逻辑斯蒂回归VS决策树VS随机森林
LR 与SVM 不同 1.logistic regression适合需要得到一个分类概率的场景,SVM则没有分类概率 2.LR其实同样可以使用kernel,但是LR没有support vector在计 ...
随机推荐
- Python - 列表与字符串的互相转换
题目:请将text字符串中的数字取出,并输出成一个新的字符串 text = "aAsmr3 idd4bgs7Dlsf 9eAF" b = list(text) new_list = ...
- React Native Android启动白屏的一种解决方案下
实现思路 思路大流程: 1.APP启动的时候控制ReactActivity从而显示启动屏. 2.编写原生模块,提供一个关闭启动屏的公共接口. 3.在js的适当位置(一般是程序初始化工作完成后)调用上述 ...
- HTTPS分析-简单易懂
一.简单总结 1.HTTPS概念总结 HTTPS 就是对HTTP进行了TLS或SSL加密. 应用层的HTTP协议通过传输层的TCP协议来传输,HTTPS 在 HTTP和 TCP中间加了一层TLS/SS ...
- MySQL CPU %sys 高的案例分析(三)
[现象] 最近有台服务器晚上CPU告警,系统抓取的故障期间的snapshot显示CPU %sys较高,同时context switch在300K以上. 是否过高的context switch引起的%s ...
- Xamarin iOS教程之显示和编辑文本
Xamarin iOS教程之显示和编辑文本 Xamarin iOS显示和编辑文本 在一个应用程序中,文字是非常重要的.它就是这些不会说话的设备的嘴巴.通过这些文字,可以很清楚的指定这些应用程序要表达的 ...
- Django 性能测试
唐纳德·克努特(Donald Knuth)曾经说过:“不成熟的优化方案是万恶之源.”然而,任何一个承受高负载的成熟项目都不可避免地需要进行优化.在本文中,我想谈谈优化Web项目代码的五种常用方法.虽然 ...
- BZOJ1712 : [Usaco2007 China]Summing Sums 加密
设$s[i]$为进行$i$次加密后所有奶牛数字的和,有$s[i]=(n-1)s[i-1]$. 设$c[i]$为某头固定的奶牛进行$i$次加密后的数字, 若$i$为奇数,有: \[c[i]=((1-n) ...
- STL中map的遍历
map作为STL中的映射容器非常好用,我们来说一下map的遍历. map.first为key值,map.second为value值,key不可修改,value可修改. 定义一个迭代指针iter,使其指 ...
- C#中四种常用集合的运用(非常重要)
C#中4个常用的集合 1.ArrayList ArrayList类似于数组,有人也称它为数组列表.ArrayList可以动态维护,而数组的容量是固定的. 它的索引会根据程序的扩展而重新进行分配和调整. ...
- Linux __attribute__(("hidden"))、default
记录下: Linux下导出so库接口时在下面情况下无法导出(编译时增加了__attribute__(("hidden"))属性). void * __attribute__((&q ...