混沌分形之逻辑斯蒂(Logistic)映射系统
前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴。
关于基类FractalEquation的定义及相关软件见:混沌与分形
(1)逻辑斯蒂映射系统
// 逻辑斯蒂映射系统
class LogisticMap : public FractalEquation
{
public:
LogisticMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = 0.0f;
m_ParamB = 4.0f; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = k*outY*(-outY);
}
outY *= ; outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};

调节下参数后的图形:

(2)正弦映射系统
// 正弦映射系统
class SinMap : public FractalEquation
{
public:
SinMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = -*PI;
m_ParamB = *PI; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = k*sinf(outY);
} outY *= 0.5f; outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};

(3)曼德勃罗映射系统
// 曼德勃罗映射系统
class MandelbrotMap : public FractalEquation
{
public:
MandelbrotMap()
{
m_StartX = 0.0f;
m_StartY = 0.0f;
m_StartZ = 0.0f; m_ParamA = -2.0f;
m_ParamB = 0.0f; m_nIterateCount = ;
} void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
{
float R = (float)rand()/RAND_MAX;
float k = m_ParamA + (m_ParamB - m_ParamA) * R;
outX = R*4.0f; outY = (float)rand()/RAND_MAX;
for (int i = ; i < m_nIterateCount; i++)
{
outY = outY*outY + k;
} outZ = z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;} private:
int m_nIterateCount;
};

最后发下被我同事当成MM的逻辑斯蒂分岔图像:

之前我还写过一篇关于逻辑斯蒂的文章:混沌数学之logistic模型
混沌分形之逻辑斯蒂(Logistic)映射系统的更多相关文章
- 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)
原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- python机器学习实现逻辑斯蒂回归
逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的 ...
- 【分类器】感知机+线性回归+逻辑斯蒂回归+softmax回归
一.感知机 详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735 1.模型和图像: 2.数学定义推导和优化: 3.流程 ...
- spark机器学习从0到1逻辑斯蒂回归之(四)
逻辑斯蒂回归 一.概念 逻辑斯蒂回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型.logistic回归的因变量可以是二分类的,也可以是多分类的.logis ...
- [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...
- 【项目实战】pytorch实现逻辑斯蒂回归
视频指导:https://www.bilibili.com/video/BV1Y7411d7Ys?p=6 一些数据集 在pytorch框架下,里面面有配套的数据集,pytorch里面有一个torchv ...
- 逻辑斯蒂(logistic)回归深入理解、阐述与实现
第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的 ...
- 逻辑斯蒂回归VS决策树VS随机森林
LR 与SVM 不同 1.logistic regression适合需要得到一个分类概率的场景,SVM则没有分类概率 2.LR其实同样可以使用kernel,但是LR没有support vector在计 ...
随机推荐
- 010.MySQL-Keepalived搭配脚本04
vim /etc/keepalived/check_MySQL.sh #!/bin/bash pkill keepalived
- IE8及以下浏览器伪数组slice方法兼容处理
前几天同事说数组的slice方法在IE8下有兼容问题,我查阅了MDN,文档里面有提到IE8及以下浏览器中,DOM对象组成的伪数组通过call调用slice方法没有遵循标准行为 我做了个demo在IE8 ...
- css基础之line-height
什么是line-height(行高)?line-height设置1.5和150%有什么区别?这是一个比较常见的css面试题,带着这个问题往下看.所谓行高是指一段文字中某一行的高度吗?具体来说不是.w3 ...
- centos 7 安装 BeautifulSoup 和requests
安装beautifulsoup wget https://www.crummy.com/software/BeautifulSoup/bs4/download/4.5/beautifulsoup4-4 ...
- [同步脚本]mysql-elasticsearch同步
公司项目搜索部分用的elasticsearch,那么这两个之间的数据同步就是一个问题. 网上找了几个包,但都有各自的缺点,最后决定还是自己写一个脚本,大致思路如下: 1.在死循环中不断的select指 ...
- luogu P1502 窗口的星星
题目链接 P1502 窗口的星星 题解 扫描线+线段树 线段树的每一个节点处理的是左边框放在当前x-1位置时的框内星星的亮度大小 按照x坐标进行离散化,得到离散化后每一个坐标x的可影响的范围 维护扫描 ...
- Codechef September Challenge 2018 游记
Codechef September Challenge 2018 游记 Magician versus Chef 题目大意: 有一排\(n(n\le10^5)\)个格子,一开始硬币在第\(x\)个格 ...
- Codeforces Round #370 (Div. 2) A. Memory and Crow 水题
A. Memory and Crow 题目连接: http://codeforces.com/contest/712/problem/A Description There are n integer ...
- 群晖NAS百度云Docker客户端下载目录没有权限的问题解决
针对这篇文章:https://zhuanlan.zhihu.com/p/42267779的问题,需要ssh进去群晖,然后把目录设置成777权限.命令如下: sudo chmod -R 777 /vol ...
- MySQL错误:TIMESTAMP with implicit DEFAULT value is deprecated
用于存放数据库的文件夹不为空,清空了再来一次!