【51Nod】1519 拆方块 贪心+递推
【题目】1519 拆方块
【题意】给定n个正整数,\(A_i\)表示第i堆叠了\(A_i\)个石子。每轮操作将至少有一面裸露的石子消除,问几轮所有石子均被消除。\(n \leq 10^5\)。
【算法】贪心+递推
观察每轮操作的变化:
\[A_i=min \{ A_i-1,A_{i-1},A_{i+1} \} \]
继续推导,因为每一轮要么-1要么取左右,那么也就是一个数传递到另一个位置要加上它们之间距离的代价(一轮一格,每轮少一个 -1 ),也就是每个数字都可以更新为:
\[A_x=\min_{i=1}^{n} \{ A_i+|x-i| \} \]
这样直接从左到右和从右到左分别递推一次即可。
最后两端的石子相当于最左和最右各有一堆高度为0的石子,递推的时候处理就可以了,答案就是所有数字的最大值。
复杂度\(O(n)\)。
【51Nod】1519 拆方块 贪心+递推的更多相关文章
- CF822D 贪心+递推
CF822D [题目链接]CF822D [题目类型]贪心+递推 &题意: 给你n个人,你可以把他们分组,但必须保持每组相等,分组之后每2个人会比赛,比如一组有i个人,那么就要比赛 次,f[i] ...
- codeforces 735C Tennis Championship(贪心+递推)
Tennis Championship 题目链接:http://codeforces.com/problemset/problem/735/C ——每天在线,欢迎留言谈论. 题目大意: 给你一个 n ...
- 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)
计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...
- [NOI2017]蔬菜(贪心+递推)
这题很有思维难度,乍一看基本无从下手. 给每个蔬菜钦定退役的时间显然很困难,可以考虑让时光倒流,从后向前递推,然后就变成了某个时间点有一部分蔬菜服役,而已经服役的蔬菜不会退役了.然后就可以直接考虑贪心 ...
- 51NOD 1149:Pi的递推式——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1149 F(x) = 1 (0 <= x < 4) F(x) ...
- 51nod 1020 逆序排列 递推DP
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...
- 【51nod】1149 Pi的递推式
题解 我们把这个函数的递归形式画成一张图,会发现答案是到每个出度为0的点的路径的方案数 这个可以用组合数算 记录一下P[i]为i减几次PI减到4以内 如果P[i + 1] > P[i],那么转向 ...
- 【51nod1519】拆方块[Codeforces](dp)
题目传送门:1519 拆方块 首先,我们可以发现,如果第i堆方块被消除,只有三种情况: 1.第i-1堆方块全部被消除: 2.第i+1堆方块全部被消除:(因为两侧的方块能够保护这一堆方块在两侧不暴露) ...
- 51nod 1639 递推
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1639 1639 绑鞋带 基准时间限制:1 秒 空间限制:131072 K ...
随机推荐
- 一种C#泛型方法在lua中表示的设计
在进行lua方法注册的时候, 大多数解决方案直接否定了泛型方法, 因为在lua侧难以表达出泛型, 以及lua的函数重载问题, 函数重载问题可以通过一些特殊方法解决, 而泛型问题是主要问题, 以Unit ...
- React笔记-首次渲染
渲染机制 渲染机制主要分为两部分: 首次渲染和更新渲染. 首次渲染 首先通过一个小例子,来讲解首次渲染过程. <!DOCTYPE html> <html lang="en& ...
- 关于运行“基于极限学习机ELM的人脸识别程序”代码犯下的一些错误
代码来源 基于极限学习机ELM的人脸识别程序 感谢文章主的分享 我的环境是 win10 anaconda Command line client (version 1.6.5)(conda 4.3.3 ...
- JSP JSTL知识结构图
自行绘制,欢迎指正.
- 《Linux内核分析》 第三周 构造一个简单的Linux系统MenuOS
Linux内核分析 第三周 构造一个简单的Linux系统MenuOS 张嘉琪 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/ ...
- vs2013的安装及测试(第三周)
1.打开同学给的安装包,发现如下问题: 2.因为是win7,提示需安装IE10.因为安装IE10必须要在安装好 server pack 1的情况下,所以从官方网站上下载好server pack 1,并 ...
- Majority Element问题---Moore's voting算法
Leetcode上面有这么一道难度为easy的算法题:找出一个长度为n的数组中,重复次数超过一半的数,假设这样的数一定存在.O(n2)和O(nlog(n))(二叉树插入)的算法比较直观.Boyer–M ...
- PHP 使用GD 库绘制图像,无法显示的问题
根据官方GD 库绘制图像文档样式 原基本样式 $width = 120; $height = 50; $img = @imagecreatetruecolor($width, $height) or ...
- HDU 5112 A Curious Matt (2014ACM/ICPC亚洲区北京站-重现赛)
A Curious Matt Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) ...
- UVAlive-7040 color(组合数学,二项式反演)
链接:vjudge 题目大意:有一排方格共 $n$ 个,现在有 $m$ 种颜色,要给这些方格染色,要求相邻两个格子的颜色不能相同.现在问恰好用了 $k$ 种颜色的合法方案数.答案对 $10^9+7$ ...