http://www.lydsy.com/JudgeOnline/problem.php?id=3992 (题目链接)

题意

  集合${S}$中有若干个不超过${m}$的非负整数,问由这些数组成一个长度${n}$的序列,使序列中的数的乘积对${m}$取模正好等于${x}$,问存在多少方案。

Solution

  好神的题。算法还是要多复习,我连${NTT}$都忘记怎么写了T_T

  这还是我的第一发原根→_→。

  一个数如果有原根,那么它会有很多原根,所以如果对时间没有特殊限制,我们枚举${rt=2~~to~~inf}$,然后判断是否存在${t<m-1}$使${rt^t=1}$。虽然我并不知道为什么可以那样check。。

  我们可以很简单的列出dp方程${f_{i,j}}$表示,已经放到了第${i}$个数,它们的乘积是${j}$的方案数。转移也就很显然了:$${f[i][j]=\sum_{k=1}^{m-1}f_{i-1,j*inv[k]}}$$

  复杂度${O(nm^2)}$,于是我们就可以获得10分的高分,是不是很良心啊。

  考虑这个东西怎么优化,我们把每一个${j}$都写成${m}$的原根的几次方,然后乘就变成加辣,然后我们就可以卷积辣。

  然后你发现${n}$有${10^9}$,我们快速幂一波,然后就AC辣。

细节

  一开始没想清没注意到还是循环卷积卧槽T_T

代码

// bzoj3992
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 1004535809
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=20010;
int f[maxn],g[maxn],rev[maxn],vis[maxn];
int n,m,rt,S,X,N,L; int power(int a,int b,int c) {
int res=1;
while (b) {
if (b&1) res=(LL)res*a%c;
b>>=1;a=(LL)a*a%c;
}
return res;
}
void root(int p) {
if (p==2) {rt=1;return;}
for (rt=2;;rt++) {
int flag=1;
for (int i=2;i*i<p;i++)
if (power(rt,(p-1)/i,p)==1) {flag=0;break;}
if (flag) break;
}
}
namespace NTT {
LL A[maxn],B[maxn];
void NTT(LL *a,int f) {
for (int i=0;i<N;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<N;i<<=1) {
LL gn=power(3,(MOD-1)/(i<<1),MOD);
for (int p=i<<1,j=0;j<N;j+=p) {
LL g=1;
for (int k=0;k<i;k++,(g*=gn)%=MOD) {
LL x=a[k+j],y=g*a[k+j+i]%MOD;
a[k+j]=(x+y)%MOD,a[k+j+i]=(x-y+MOD)%MOD;
}
}
}
if (f==-1) reverse(a+1,a+N);
}
void Init(int *a,int *b) {
for (int i=0;i<N;i++) A[i]=a[i],B[i]=b[i];
NTT(A,1);NTT(B,1);
for (int i=0;i<N;i++) (A[i]*=B[i])%=MOD;
NTT(A,-1);
LL ev=power(N,MOD-2,MOD);
for (int i=0;i<N;i++) (A[i]*=ev)%=MOD;
for (int i=0;i<m-1;i++) a[i]=(A[i]+A[i+m-1])%MOD;
}
}
using namespace NTT; int main() {
scanf("%d%d%d%d",&n,&m,&X,&S);
root(m);
for (int x,i=1;i<=S;i++) scanf("%d",&x),vis[x]=1;
for (int p=1,i=0;i<m-1;i++,(p*=rt)%=m) if (vis[p]) f[i]=1;
for (N=1,L=-1;N<(m-1)*2;N<<=1) L++;
for (int i=0;i<N;i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<L);
g[0]=1;
while (n) {
if (n&1) Init(g,f);
n>>=1;Init(f,f);
}
for (int i=0,p=1;i<m-1;i++,(p*=rt)%=m)
if (p==X) {printf("%d",g[i]);break;}
return 0;
}

【bzoj3992】 SDOI2015—序列统计的更多相关文章

  1. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  2. BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)

    题意 题目链接 给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数 Sol 神仙题Orz 首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\ ...

  3. BZOJ3992: [SDOI2015]序列统计

    Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列. ...

  4. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  5. 【动态规划】bzoj3992 [Sdoi2015]序列统计 10分

    #include<cstdio> using namespace std; #define MOD 1004535809 int a[8001],f[1001][101],n,m,x,S; ...

  6. 【NTT】bzoj3992: [SDOI2015]序列统计

    板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生 ...

  7. BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...

  8. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  9. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  10. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

随机推荐

  1. 【WPF】如何使用wpf实现屏幕最前端的绘图?

    原文:[WPF]如何使用wpf实现屏幕最前端的绘图? 引言 在知乎上面看到如何使用wpf实现屏幕最前端的绘图? 这么一个问题,觉得全屏弹幕很有趣,所以把它实现了. 实现 界面设置很简单,Window界 ...

  2. JQuery快速入门-Ajax

    一.AJAX概述 概念:AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). 优点:通过在后台与服务器进行少量数据交换,AJAX ...

  3. grunt-inline:一个资源内嵌插件

    一.插件简介 将引用的外部资源,如js.css.img等,内嵌到引用它们的文件里去. 二.使用场景 在项目中,出于某些原因,有的时候我们需要将一些资源,比如js脚本内嵌到页面中去.比如我们的html页 ...

  4. 安装loadrunner11出现Microsoft Visual c++2005 sp1安装失败

    本文转至别处,网上大神多

  5. 1.0.0 Unity零基础入门——打砖块

    1)设置好相应场景 2)创建脚本挂载到相应物体上并编写 2.代码 //Shoot - - 控制小球生成与射击 using System.Collections; using System.Collec ...

  6. PAT甲题题解-1033. To Fill or Not to Fill (25)-模拟

    模拟先说一下例子,最后为方便起见,在目的地安增加一个费用为0的加油站0 1 2 3 4 5 6 7 87.1 7.0 7.2 6.85 7.5 7.0 7.3 6.0 00 150 200 300 4 ...

  7. PAT甲题题解-1111. Online Map (30)-PAT甲级真题(模板题,两次Dijkstra,同时记下最短路径)

    题意:给了图,以及s和t,让你求s到t花费的最短路程.最短时间,以及输出对应的路径.   对于最短路程,如果路程一样,输出时间最少的. 对于最短时间,如果时间一样,输出节点数最少的.   如果最短路程 ...

  8. 《Linux内核分析》第五周学习总结 扒开系统调用的三层皮(下)

    扒开系统调用的三层皮(下) 郝智宇 无转载 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.给Men ...

  9. 《Linux内核分析》课程第一周学习总结

    姓名:何伟钦 学号:20135223 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/U ...

  10. 20170831 php

    今天开始学习php 发现这个网站教程感觉入门很轻松 http://www.php.cn/code/25.html 配置环境遇到了端口占用的问题 解决方案: http://www.weekdian.co ...