题目描述

在一个有 \(m \times n\) 个方格的棋盘中,每个方格中有一个正整数。

现要从方格中取数,使任意 \(2\) 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。

输入格式

文件第 \(1\) 行有 \(2\) 个正整数 \(m\) 和 \(n\) ,分别表示棋盘的行数和列数。接下来的 \(m\) 行,每行有 \(n\) 个正整数,表示棋盘方格中的数。

注意:\(m\) 是行数,\(n\) 是列数。

输出格式

输出取数的最大总和。

样例

样例输入

3 3
1 2 3
3 2 3
2 3 1

样例输出

11

数据范围与提示

\(1 \leq n, m \leq 30\)

题解

二分图最大权独立集

最大点权独立集 \(=\) 总权值 \(-\) 最小点权覆盖集。

最小点权覆盖集 \(=\) 图的最小割值 \(=\) 最大流。

具体网上有解释

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=30+10,inf=0x3f3f3f3f;
int n,m,all,s,t,e=1,beg[MAXN*MAXN],cur[MAXN*MAXN],vis[MAXN*MAXN],level[MAXN*MAXN],nex[MAXN*MAXN<<3],to[MAXN*MAXN<<3],cap[MAXN*MAXN<<3],clk,dr[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return (x<y?x:y);}
template<typename T> inline T max(T x,T y){return (x>y?x:y);}
inline int id(int x,int y)
{
return (x-1)*m+y;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);
s=n*m+1,t=s+1;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)
{
int x;read(x);all+=x;
if((i+j)&1)
{
insert(s,id(i,j),x);
for(register int k=0;k<4;++k)
{
int dx=i+dr[k][0],dy=j+dr[k][1];
if(dx<1||dx>n||dy<1||dy>m)continue;
insert(id(i,j),id(dx,dy),inf);
}
}
else insert(id(i,j),t,x);
}
write(all-Dinic(),'\n');
return 0;
}

【刷题】LOJ 6007 「网络流 24 题」方格取数的更多相关文章

  1. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  2. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  3. Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)

    Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...

  4. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  5. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  6. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  7. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  8. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  9. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

随机推荐

  1. 第40章 CAN—通讯实验—零死角玩转STM32-F429系列

    第40章 CAN—通讯实验—零死角玩转STM32-F429系列   第40章     CAN—通讯实验 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视 ...

  2. Bagging(R语言实现)—包外错误率,多样性测度

    1.      Bagging Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集.每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次 ...

  3. 2017-2018 Exp8 Web基础 20155214

    目录 Exp8 Web基础 实验内容 建站过程 SQL注入 知识点 Exp8 Web基础 实验内容 实验环境 主机 Kali 靶机 Kali 实验工具 后台语言 'PHP' 服务器 'Apache' ...

  4. 20155306白皎 《网络对抗》 Exp9 Web安全基础实践

    20155306白皎 <网络对抗> Exp9 Web安全基础实践 一.基本问题回答 SQL注入攻击原理,如何防御 原理是: 就是通过把SQL命令插入到"Web表单递交" ...

  5. 2015306 白皎 《网络攻防》EXP6 信息搜集与漏洞扫描

    2015306 白皎 <网络攻防>EXP6 信息搜集与漏洞扫描 一.问题回答 (1)哪些组织负责DNS,IP的管理. 顶级的管理者是Internet Corporation for Ass ...

  6. 20155339 Exp7 网络欺诈防范

    20155339 Exp7 网络欺诈防范 .基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 当连接局域网的时候应该最容易被攻击,比如说连接了一些不清楚是什么的WiFi其实是很容易收 ...

  7. SQL Server 启动时发生错误1069:由于登录失败而无法启动

    解决方法:    (1). 我的电脑--控制面板--管理工具--服务--右键MSSQLSERVER--属性--登陆--登陆身份--选择"本地系统帐户".    (2). 我的电脑- ...

  8. 汇编-MOV指令

    知识点:  MOV指令  基址  内联汇编  把OD附加到资源管理器右键菜单 一.MOV指令 aaa=0x889977;//MOV DWORD PTR DS:[0x403018],0x8899 ...

  9. python高并发和多线程的关系

    “高并发和多线程”总是被一起提起,给人感觉两者好像相等,实则 高并发 ≠ 多线程 多线程是完成任务的一种方法,高并发是系统运行的一种状态,通过多线程有助于系统承受高并发状态的实现.   高并发是一种系 ...

  10. (2)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- .NetCore启动配置 和 .NetCoreWebApi

    什么是.Net Core?.Net Core是微软开发的另外一个可以跨Linux.Windows.mac等平台的.Net.Net Core相关知识看文章地步dotnet dllname.dll 运行P ...