题目描述

在一个有 \(m \times n\) 个方格的棋盘中,每个方格中有一个正整数。

现要从方格中取数,使任意 \(2\) 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。

输入格式

文件第 \(1\) 行有 \(2\) 个正整数 \(m\) 和 \(n\) ,分别表示棋盘的行数和列数。接下来的 \(m\) 行,每行有 \(n\) 个正整数,表示棋盘方格中的数。

注意:\(m\) 是行数,\(n\) 是列数。

输出格式

输出取数的最大总和。

样例

样例输入

3 3
1 2 3
3 2 3
2 3 1

样例输出

11

数据范围与提示

\(1 \leq n, m \leq 30\)

题解

二分图最大权独立集

最大点权独立集 \(=\) 总权值 \(-\) 最小点权覆盖集。

最小点权覆盖集 \(=\) 图的最小割值 \(=\) 最大流。

具体网上有解释

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=30+10,inf=0x3f3f3f3f;
int n,m,all,s,t,e=1,beg[MAXN*MAXN],cur[MAXN*MAXN],vis[MAXN*MAXN],level[MAXN*MAXN],nex[MAXN*MAXN<<3],to[MAXN*MAXN<<3],cap[MAXN*MAXN<<3],clk,dr[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return (x<y?x:y);}
template<typename T> inline T max(T x,T y){return (x>y?x:y);}
inline int id(int x,int y)
{
return (x-1)*m+y;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);
s=n*m+1,t=s+1;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)
{
int x;read(x);all+=x;
if((i+j)&1)
{
insert(s,id(i,j),x);
for(register int k=0;k<4;++k)
{
int dx=i+dr[k][0],dy=j+dr[k][1];
if(dx<1||dx>n||dy<1||dy>m)continue;
insert(id(i,j),id(dx,dy),inf);
}
}
else insert(id(i,j),t,x);
}
write(all-Dinic(),'\n');
return 0;
}

【刷题】LOJ 6007 「网络流 24 题」方格取数的更多相关文章

  1. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  2. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  3. Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)

    Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...

  4. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  5. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  6. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  7. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  8. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  9. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

随机推荐

  1. C++ 怎么让静态变量只初始化一次

    童鞋们在学习C++的时候,往往只是按照书本上的原文去强行记忆各种特性,比方说,静态变量只初始化一次.你心中一定在默念:一定要记住,static只会初始化一次云云,希望自己能够记住.告诉你,你为什么总是 ...

  2. OC实现个人中心页面

    AppDelegate.m: - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDic ...

  3. 【Python实践-7】输出100以内的所有素数

    #输出100以内的所有素数,素数之间以一个空格区分(注意,最后一个数字之后不能有空格). i= l=[] : k= ,i): : k=k+ : l.append(i) i=i+ print(" ...

  4. ASP.NET多行文本框限制字符个数

    asp.net中TextBox当设置TextMode = Multiline时,其MaxLength属性无效.可使用JS进行辅助限制输入的字符个数.中文算两个字符,西文算1个字符. TextBox属性 ...

  5. pycharm如何全局进行查找一个关键词

    PyCharm的Find in Path功能提供了全局查找功能,快捷键为Ctrl + Shift + F.Find则是在当前文件查找,快捷键为Ctrl + F.这两个个功能非常实用. Find in ...

  6. 数据库历险记(二) | Redis 和 Mecached 到底哪个好?

    文章首发于微信公众号「陈树义」,专注于 Java 技术分享的社区.点击链接扫描二维码,与500位小伙伴一起共同进步.微信公众号二维码 http://p3npq6ecr.bkt.clouddn.com/ ...

  7. Android 实现 WheelView

    wheel view 目录(?)[-] Android WheelView效果图 网上的开源代码 实现思路 扩展Gallery 如何使用 我们都知道,在iOS里面有一种控件------滚筒控件(Whe ...

  8. linux中使sqlplus能够上下翻页

    安装包链接:https://pan.baidu.com/s/1WsQTeEQClM88aEqIvNi2ag 提取码:s241  rlwrap-0.37-1.el6.x86_64.rpm 和 rlwra ...

  9. PAT甲题题解-1053. Path of Equal Weight (30)-dfs

    由于最后输出的路径排序是降序输出,相当于dfs的时候应该先遍历w最大的子节点. 链式前向星的遍历是从最后add的子节点开始,最后添加的应该是w最大的子节点, 因此建树的时候先对child按w从小到大排 ...

  10. PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)

    题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...