[leetcode 120]triangle 空间O(n)算法
1 题目
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
2 思路
这是一个动态规划题,每行的数据数对应行数,设F[m,n]表示到达第m行,第n列的最小代价,那么有
F[m,n]=min{F[i-1,j]+b,F[i-1,j-1]+b},其中b为第m行,第n列的数
那么边界值怎么处理呢?
我是设置正常值从1开始,0和最后一个值的后一位为IntMax。
这道题是我自己想出来的。
3 代码
①空间O(n^2),第一次想到的是这个
public int minimumTotal(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[lineNumber][lineNumber+2];
//F(a,b) = min{F(a-1,b-1)+b,F(a-1,b)+b} F(a,b)表示 第a行第b个的最小代价
//set F(a,0) to MAX, F(a,B) to MAX , where B = triangle.get(a).size()+1, 0<=a<lineNumber;
//set the initial value
F[0][1] = triangle.get(0).get(0);
for (int i = 0; i < lineNumber; i++) {
F[i][0] = Integer.MAX_VALUE;
int lineSize = triangle.get(i).size() + 1;
F[i][lineSize] = Integer.MAX_VALUE;
}
// long former = 0;
//dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[i][j] = Math.min(F[i-1][j-1], F[i-1][j]) + row.get(j-1);
}
}
int min = F[lineNumber-1][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber-1][i];
if(temp < min){
min = temp;
}
}
return min;
}
②空间o(n),改进了一下
public int minimumTotal2(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[2][lineNumber+2];
//F(a,b) = min{F(a-1,b-1),F(a-1,b)} + b; F(a,b)represent the minValue of the a row b list
//set the initial value and the boundary value
F[0][0] = Integer.MAX_VALUE;
F[0][1] = triangle.get(0).get(0);
F[0][2] = Integer.MAX_VALUE;
//dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[1][j] = Math.min(F[0][j-1], F[0][j]) + row.get(j-1);
}
F[1][0] = Integer.MAX_VALUE;
F[1][rowSize+1] = Integer.MAX_VALUE;
for (int j = 0; j <= rowSize+1; j++) {
F[0][j] = F[1][j];
}
}
int min = F[lineNumber > 1 ? 1 : 0][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber > 1 ? 1 : 0][i];
if(temp < min){
min = temp;
}
}
return min;
}
[leetcode 120]triangle 空间O(n)算法的更多相关文章
- LeetCode 120. Triangle (三角形)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- LeetCode 120. Triangle (三角形最小路径和)详解
题目详情 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...
- LeetCode 120. Triangle三角形最小路径和 (C++)
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- LeetCode - 120. Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- leetcode 120 Triangle ----- java
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- [LeetCode] 120. Triangle _Medium tag: Dynamic Programming
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- Java for LeetCode 120 Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- [leetcode] 120. Triangle (Medium)
原题 思路: dp,从下往上依次取得最小的,取到最上面的,就是一条最小的路径. class Solution { public: int minimumTotal(vector<vector&l ...
- [leetcode]120.Triangle三角矩阵从顶到底的最小路径和
Given a triangle, find the minimum path sum from top to bottom.Each step you may move to adjacent nu ...
随机推荐
- 201621123008 《Java程序设计》第八周学习总结
1. 本周学习总结 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: public boolean contains(Object o ...
- MSI-X 之有别于MSI
转自: https://www.cnblogs.com/helloworldspace/p/6760718.html MSI-X Capability结构 MSI-X Capability中断机制与M ...
- Linux设置桌面图标 (双击运行jar包)
Ubuntu平台 预备条件: 1)平台是Gridion上的Ubuntu 2)安装了JRE (版本如下) 3)在IDE(我用的是IDEA)打包成可运行的jar文件 设置步骤: 1)新建.desktop文 ...
- c++ boost 苹果内购 IAP验证
// 1111.cpp: 定义控制台应用程序的入口点. // #include "stdafx.h" #include <cstdlib> #include <i ...
- Capacity To Ship Packages Within D Days LT1011
A conveyor belt has packages that must be shipped from one port to another within D days. The i-th p ...
- 【转】VxWorks中高精度实时时钟的实现及C语言汇编混合编程
最近一个项目中需要在VxWorks下使用一个高精度实时时钟,要求精度为1ms,溢 出时间大于5小时.VxWorks提供系统时钟,该时钟在操作系统启动后开始计数,精度为1个tick,可以通过tickGe ...
- 【Redis】安装及简单使用
Redis介绍 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久化 ...
- Google Reader 快关了!!
现在还每天用Google Reader, 每次打开都提示7月1号要关闭... 上图怀念: 控制区功能:排序.展开\收缩显示.上一条\下一条,还有下拉框下的很多功能... 列表显示 针对每个Item下的 ...
- 2018.11.18 spoj Triple Sums(容斥原理+fft)
传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai,aj,ak( ...
- p标签在div中垂直居中,并且div高度随着p标签文字内容的变化而变化
1.div设置flex布局 div{ display: flex; align-items: center; } 2.div不要设置height,设置min-height