1 题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

2 思路

这是一个动态规划题,每行的数据数对应行数,设F[m,n]表示到达第m行,第n列的最小代价,那么有

F[m,n]=min{F[i-1,j]+b,F[i-1,j-1]+b},其中b为第m行,第n列的数

那么边界值怎么处理呢?

我是设置正常值从1开始,0和最后一个值的后一位为IntMax。

这道题是我自己想出来的。

3 代码

①空间O(n^2),第一次想到的是这个

public int minimumTotal(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[lineNumber][lineNumber+2];
//F(a,b) = min{F(a-1,b-1)+b,F(a-1,b)+b} F(a,b)表示 第a行第b个的最小代价
//set F(a,0) to MAX, F(a,B) to MAX , where B = triangle.get(a).size()+1, 0<=a<lineNumber;
//set the initial value F[0][1] = triangle.get(0).get(0);
for (int i = 0; i < lineNumber; i++) {
F[i][0] = Integer.MAX_VALUE;
int lineSize = triangle.get(i).size() + 1;
F[i][lineSize] = Integer.MAX_VALUE;
}
// long former = 0;
//dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[i][j] = Math.min(F[i-1][j-1], F[i-1][j]) + row.get(j-1);
}
} int min = F[lineNumber-1][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber-1][i];
if(temp < min){
min = temp;
}
} return min;
}

②空间o(n),改进了一下

public int minimumTotal2(List<List<Integer>> triangle){
int lineNumber = triangle.size();
Integer[][] F = new Integer[2][lineNumber+2];
//F(a,b) = min{F(a-1,b-1),F(a-1,b)} + b; F(a,b)represent the minValue of the a row b list //set the initial value and the boundary value
F[0][0] = Integer.MAX_VALUE;
F[0][1] = triangle.get(0).get(0);
F[0][2] = Integer.MAX_VALUE; //dynamic programming
for (int i = 1; i < lineNumber; i++) {
List<Integer> row = triangle.get(i);
int rowSize = row.size();
for (int j = 1; j <= rowSize; j++) {
F[1][j] = Math.min(F[0][j-1], F[0][j]) + row.get(j-1);
}
F[1][0] = Integer.MAX_VALUE;
F[1][rowSize+1] = Integer.MAX_VALUE;
for (int j = 0; j <= rowSize+1; j++) {
F[0][j] = F[1][j];
}
} int min = F[lineNumber > 1 ? 1 : 0][1];
for (int i = 1; i <= lineNumber; i++) {
int temp = F[lineNumber > 1 ? 1 : 0][i];
if(temp < min){
min = temp;
}
} return min;
}

[leetcode 120]triangle 空间O(n)算法的更多相关文章

  1. LeetCode 120. Triangle (三角形)

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  2. LeetCode 120. Triangle (三角形最小路径和)详解

    题目详情 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...

  3. LeetCode 120. Triangle三角形最小路径和 (C++)

    题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...

  4. LeetCode - 120. Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  5. leetcode 120 Triangle ----- java

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  6. [LeetCode] 120. Triangle _Medium tag: Dynamic Programming

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  7. Java for LeetCode 120 Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  8. [leetcode] 120. Triangle (Medium)

    原题 思路: dp,从下往上依次取得最小的,取到最上面的,就是一条最小的路径. class Solution { public: int minimumTotal(vector<vector&l ...

  9. [leetcode]120.Triangle三角矩阵从顶到底的最小路径和

    Given a triangle, find the minimum path sum from top to bottom.Each step you may move to adjacent nu ...

随机推荐

  1. 【SpringAop】【统一日志处理】注解方式理解以及使用

    [注意:本次代码的demo会存在百度网盘,由于公司的保密,禁止上传,所以仅本人可见] 目前公司在做数据资产项目,数据质量部分使用到了springaop做统一日志处理,以前对这块有了解,有点模糊不清,今 ...

  2. 基于内存,redis,mysql的高速游戏数据服务器设计架构 ZT

    zt  http://www.cnblogs.com/captainl1993/p/4788236.html 1.数据服务器详细设计 数据服务器在设计上采用三个层次的数据同步,实现玩家数据的高速获取和 ...

  3. springboot server.address 配置问题

    1. server.address 为对应机器ip地址时 ,如 18.10.x.x 此时访问该服务只能使用 ip 访问 . 2. 配置为 127.0.0.1 时  可以使用 localhost  和  ...

  4. oracle银行卡卡号计算函数

    create or replace function GetCardNoBySerialNo(v_sysacc varchar2,v_position number) return varchar2 ...

  5. javascript声明对象时 带var和不带var的区别

    2015/11/25补充: 关于变量声明这里有详细的解释: https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Stat ...

  6. 各种 on事件触发js代码

    [转]各种 on事件触发js代码 1.onmouseenter:当鼠标进入选区执行代码 <div style="background-color:red" onmouseen ...

  7. Linux常见目录使用区别

    /bin 在有的Unix和Linux系统中是/usr/bin的链接,不过UBuntu系统是两个独立的目录./bin 存放系统管理员和普通用户都要使用的程序. /sbin 存放用于系统恢复,系统启动,系 ...

  8. clion中资源文件以及头文件的引用

    首先在使用clion中没有将文件target就会出现下面的错误  在使用的时候可以默认一下  在以后的使用中如果不需要某个文件时  就可以在CMakeLis.txt文件把它删除掉 在代码界面的最上面出 ...

  9. 1-10假期训练(hdu-2059 简单dp)

    题目一:传送门 思路:水题,模拟即可 题目二:传送门 思路:dp,决策每个充电站是否要充电.(决策只有搜索,DP两种解决方法) (1)考虑状态的个数,n+2个,因为除了n个还有位置0,终点len两种状 ...

  10. 在vue中没有数据的渲染方法

    1.例如在评论区中,评论一般分为两种形式,一种是有评论,一种是没有评论, 用v-if进行判断,判断的是评论的长度,此时评论的数据应为数组 2.可以computed中记性计算后进行数据的返回在用v-if ...