[luogu3980] 志愿者招募
题面
又一次考试网络流爆零......
这一题一看就是网络流, 但是要怎么构图呢? 考虑到途中的一些因素, 首先, 每一种志愿者控制的区间范围为\(S_{i}\)到\(T_{i}\), 所以, 我们要使得每种志愿者只能控制这段区间, 其他的不能够控制, 其次, 每个时间都有一个最小的值, 也就是这条边(我们将时间段看为一条边更加方便)有一个下界, 想到了什么, 上下界网络流, 每条边都要符合上界和下界的约束, 没有学过的可以戳一下.
那么初始的构图也就出来了, 每个时间作为一条边, 那么由\(i\)向\(i + 1\)连一条边, 容量为\(INF - lower(i)\), 费用为0(由于人是控制一段区间的, 他在这段区间中的任意两个点流费用都为0, 可以看做这个人继续做事, 已经付钱了, 你得给我做完事才能走)(\(lower(i)\)代表时间\(i\)最少需要多少人, 其实这条边容量为\(INF\)没有问题, 假装上界为\(INF + lower(i)\)就可以了, 反正可以不停地流), 考虑到之前所说, 每个点只能约束自己的一段区间, 有点像循环流, 从\(S_{i}\)出发, 流到\(T_{i}\)就重新流, 但是这里由于\(T_{i}\)被看成了一条边, 所以我们需要在点\(T_{i} + 1\)往\(S_{i}\)连一条容量为\(INF\), 费用为\(c\)的边, 代表当前类\(i\)的志愿者控制且只能控制\(S_{i}\)到\(T_{i}\)这段时间.
最终构图是这样的: 每个点\(i\)向\(i + 1\)连边, 每个\(T_{i} + 1\)向\(S_{i}\)连边, 注意在每个点\(i\)向\(i + 1\)连边时, 由于你是默认这条边流了一个下界的, 你每个点的流量不一定平衡, 记录一下每个点流入和流出的差, 对于一条下界为\(x\)的边i -> i + 1, 记\(delta[i]\)为点\(i\)流入与流出的差, 则\(delta[i] -= x\), \(delta[i + 1] += x\), 连完所有边后, 注意到每个点的\(delta\)不一定为0, 对于\(delta\)大于或者小于0的情况, 戳上面那个吧, 有详细的介绍, 最后跑一遍无源汇上下界最小费用可行流就可以了, 也就是在构出的有源汇的图中跑一遍最小费用最大流即可.
具体代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 2005
#define INF 1e9
using namespace std;
int n, m, S, T, delta[N], head[N], cnt = 1, p[N], vis[N];
struct node
{
int from, to, next;
long long flow, cost;
} edge[100005];
long long a[N], d[N];
inline int read()
{
int x = 0, w = 1;
char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
}
inline void add(int u, int v, long long w, long long cost)
{
edge[++cnt] = { u, v, head[u], w, cost }; head[u] = cnt;
edge[++cnt] = { v, u, head[v], 0, -cost }; head[v] = cnt;
}
bool SPFA(long long &cost)
{
memset(d, 0x3f, sizeof(d)); memset(a, 0x3f, sizeof(a));
queue<int> q; q.push(S); d[S] = 0; vis[S] = 1;
while(!q.empty())
{
int u = q.front(); q.pop(); vis[u] = 0;
for(int i = head[u]; i; i = edge[i].next)
{
int v = edge[i].to;
if(d[v] > d[u] + edge[i].cost && edge[i].flow > 0)
{
d[v] = d[u] + edge[i].cost; a[v] = min(a[u], edge[i].flow);
p[v] = i; if(!vis[v]) { vis[v] = 1; q.push(v); }
}
}
}
if(d[T] == d[0]) return 0;
cost += (a[T] * d[T]);
for(int i = T; i != S; i = edge[p[i]].from)
{
edge[p[i]].flow -= a[T]; edge[p[i] ^ 1].flow += a[T];
}
return 1;
}
int main()
{
n = read(); m = read();
S = n + 2; T = S + 1;
for(int i = 1; i <= n; i++) { int x = read(); add(i, i + 1, INF, 0); delta[i] -= x; delta[i + 1] += x; }
for(int i = 1; i <= m; i++)
{
int u = read(), v = read(), c = read();
add(v + 1, u, INF, c);
}
for(int i = 1; i <= n + 1; i++)
{
if(delta[i] < 0) add(i, T, -delta[i], 0);
if(delta[i] > 0) add(S, i, delta[i], 0);
}
long long cost = 0;
while(SPFA(cost));
printf("%lld\n", cost);
return 0;
}
[luogu3980] 志愿者招募的更多相关文章
- BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4064 Solved: 2476[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ-1061 志愿者招募 线性规划转最小费用最大流+数学模型 建模
本来一眼建模,以为傻逼题,然后发现自己傻逼...根本没想到神奇的数学模型..... 1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 ...
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- bzoj 1061 志愿者招募(最小费用最大流)
[Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3792 Solved: 2314[Submit][Status][Di ...
- 【BZOJ】【1061】【NOI2008】志愿者招募
网络流/费用流 OrzOrzOrz,这题太神了不会捉. 题解:https://www.byvoid.com/blog/noi-2008-employee/ 这道题正确的解法是构造网络,求网络最小费用最 ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- bzoj1061: [Noi2008]志愿者招募
线性规划与费用流.http://www.cnblogs.com/iiyiyi/p/5616080.html.数组范围开错了!!!然后2.31-1=0x7fffffff!=0x7f7f7f7f. 开始以 ...
- NOI2008 志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1859 Solved: 1169[Submit][Stat ...
随机推荐
- LinkedBlockQueue生产消费源码解析
LinkedBlockQueue自JDK1.5以后提供的一种阻塞队列,遵循生产者消费者模式,实现了BlockQueue接口,如图 从它的名字可以了解到它是采用链表的方式实现了阻塞队列,并且定义了“节点 ...
- SpringBoot整合SpringData JPA入门到入坟
首先创建一个SpringBoot项目,目录结构如下: 在pom.xml中添加jpa依赖,其它所需依赖自行添加 <dependency> <groupId>org.springf ...
- Android插件化
http://www.androidblog.cn/index.php/Index/detail/id/16# Android Hotfix 新方案——Amigo 源码解读 https://www.d ...
- Java系统和PHP系统相互调用
一.HTTP JSON方式的缺点 JSON序列化效率低 多语言服务治理功能低 二.关于RPC框架 RPC 框架大致分为两类,一种是偏重服务治理,另一种侧重跨语言调用 2.1 服务治理型 特点 功能丰富 ...
- HDU2157(SummerTrainingDay05-F dp)
How many ways?? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- LOJ1070(SummerTrainingDay05-B 矩阵快速幂)
Algebraic Problem Given the value of a+b and ab you will have to find the value of an+bn. a and bnot ...
- django项目一 登录注册
STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR,'static') ] AUTH_USER_MODEL = 'cr ...
- 转载文章CSS3的calc()使用
calc()对大家来说,或许很陌生,不太会相信calc()是css中的部分.因为看其外表像个函数,既然是函数为何又出现在CSS中呢?这一点也让我百思不得其解,今天有一同事告诉我,说CSS3中有一个属性 ...
- JS 词法作用域 p2
关于js 还是写的简短些,利于个人理解: 先看一个例子: var a = 2; function fn(){ var a = 3; console.log(a); } fn(a); 说明:作用域查找会 ...
- promise的理解和应用
老铁们,我又满血复活了,今天我准备来吹一波我对promise,如有错吴请直接指出,明白了吗?话不多说开始吧 首先我们需要知道啥叫promise,我问了问大佬,他说这个东西是 异步操作的同步代码(but ...