Kosaraju算法学习
Kosaraju 算法学习
序
这星期捣鼓了一个新的算法——Kosaraju算法
今天分享给大家
简介
Kosaraju算法,其实与tarjan算法差不多。但是码量较小,容易记忆。其时间复杂度与tarjan算法一样,为O(n+m),所以,某种程度上来说Kosaraju可以替代tarjan算法。
算法思路
如果直接让我讲Kosaraju算法到底是基于什么实现的,我肯定讲不出来,但只能知道它的基本思路——dfs两次。
就是这么简单,当然,为什么广大的oier不学习Kosaraju算法呢?因为麻烦。
Kosaraju算法中将利用到反边(有向图),使其代码雅观度大大降低。。。
废话说了那么多,言归正传。Kosaraju算法就是先用正边dfs一次,将dfs时每遍历完一个点就push到一个栈中。第二次从栈顶节点反边遍历一次,记录一下id就好了。。。
PS:我真的证明不来QWQ
核心代码
void dfs_1(int x){
vis[x]=1;
for(int i=fir[x];i;i=nxt[i]){
if(vis[son[i]]==0) dfs_1(son[i]);
}
d[++t]=x;
}
void dfs_2(int x){
vis[x]=t;
s[t]++;
for(int i=fir2[x];i;i=nxt2[i]){
if(vis[son2[i]]==0) dfs_2(son2[i]);
}
}
void Kosaraju(){
t=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
if(vis[i]==0) dfs_1(i);
}
memset(vis,0,sizeof(vis));t=0;
for(int i=n;i>=1;i--){
if(vis[d[i]]==0) t++,dfs_2(d[i]);
}
}
写在最后
祝大家2019新年快乐!(手动滑稽)
Kosaraju算法学习的更多相关文章
- 算法学习笔记:Kosaraju算法
Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量. 背景知识 ...
- Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- Kosaraju 算法查找强连通分支
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...
- 半连通分量--Tarjan/Kosaraju算法
一个有向图称为半连通(Semi-Connected),满足:对于图中任两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. 若满足,则称G’是G的一个导出子图. 若G’是G的导出子图,且G’半 ...
- Kosaraju算法---强联通分量
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组). 算法描叙: :对 ...
- Kosaraju 算法
Kosaraju 算法 一.算法简介 在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量.它利用了一 ...
- DSP算法学习-过采样技术
DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...
随机推荐
- Java对象与Map间相互转换
将Java对象转为一个Map,以及将map转为对应Java对象,代码如下: public class BeanMapUtil { private static ConcurrentHashMap< ...
- Windows 10 中的存储空间
存储空间有助于保护你的数据免受驱动器故障的影响,并随着你向电脑添加驱动器而扩展存储.你可以使用存储空间将两个或多个驱动器一起分组到一个存储池中,然后使用该池的容量来创建称为存储空间的虚拟驱动器.这些存 ...
- String类的一些细节
先看一段代码: public static void main(String[] args) { String a = "a"+"b"+1; ...
- 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)
bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...
- 【agc002f】Leftmost Ball(动态规划)
[agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...
- 在c语言中嵌入汇编语句,对于我来说相当难。
今天早上在csdn论坛上看到一个帖子http://topic.csdn.net/u/20120917/14/82f42e17-977a-4824-95bd-7b79db15d283.html:“C语言 ...
- node.js浅谈
相信大家对node.js也很不陌生吧,现在我来总结一下常用的吧~ 我们Web全栈工程师最多的就是用Node作为后台了,Node.js虽然可以作为后台语言,但是相对于Java那些老牌后台语言真是一点优势 ...
- python创建与遍历List二维列表
python创建与遍历List二维列表 觉得有用的话,欢迎一起讨论相互学习~Follow Me python 创建List二维列表 lists = [[] for i in range(3)] # 创 ...
- 网络技术之TCP三次握手
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手方式建立一个连接 第一次握手:c->s 建立连接时,客户端发送SYN包(syn=j){注:syn:Synchronize Sequ ...
- 支付宝APP支付,提示代码 ALIN10070
ALIN10070 此代码时ALI64代码拆分后的细分代码: 代表签名验证失败等相关问题: 如果近期修改过或者续签 过签约协议,也需要更新公私钥.