Kosaraju算法学习
Kosaraju 算法学习
序
这星期捣鼓了一个新的算法——Kosaraju算法
今天分享给大家
简介
Kosaraju算法,其实与tarjan算法差不多。但是码量较小,容易记忆。其时间复杂度与tarjan算法一样,为O(n+m),所以,某种程度上来说Kosaraju可以替代tarjan算法。
算法思路
如果直接让我讲Kosaraju算法到底是基于什么实现的,我肯定讲不出来,但只能知道它的基本思路——dfs两次。
就是这么简单,当然,为什么广大的oier不学习Kosaraju算法呢?因为麻烦。
Kosaraju算法中将利用到反边(有向图),使其代码雅观度大大降低。。。
废话说了那么多,言归正传。Kosaraju算法就是先用正边dfs一次,将dfs时每遍历完一个点就push到一个栈中。第二次从栈顶节点反边遍历一次,记录一下id就好了。。。
PS:我真的证明不来QWQ
核心代码
void dfs_1(int x){
vis[x]=1;
for(int i=fir[x];i;i=nxt[i]){
if(vis[son[i]]==0) dfs_1(son[i]);
}
d[++t]=x;
}
void dfs_2(int x){
vis[x]=t;
s[t]++;
for(int i=fir2[x];i;i=nxt2[i]){
if(vis[son2[i]]==0) dfs_2(son2[i]);
}
}
void Kosaraju(){
t=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
if(vis[i]==0) dfs_1(i);
}
memset(vis,0,sizeof(vis));t=0;
for(int i=n;i>=1;i--){
if(vis[d[i]]==0) t++,dfs_2(d[i]);
}
}
写在最后
祝大家2019新年快乐!(手动滑稽)
Kosaraju算法学习的更多相关文章
- 算法学习笔记:Kosaraju算法
Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量. 背景知识 ...
- Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- Kosaraju 算法查找强连通分支
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...
- 半连通分量--Tarjan/Kosaraju算法
一个有向图称为半连通(Semi-Connected),满足:对于图中任两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. 若满足,则称G’是G的一个导出子图. 若G’是G的导出子图,且G’半 ...
- Kosaraju算法---强联通分量
1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组). 算法描叙: :对 ...
- Kosaraju 算法
Kosaraju 算法 一.算法简介 在计算科学中,Kosaraju的算法(又称为–Sharir Kosaraju算法)是一个线性时间(linear time)算法找到的有向图的强连通分量.它利用了一 ...
- DSP算法学习-过采样技术
DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...
随机推荐
- catboost原理以及Python代码
原论文: http://learningsys.org/nips17/assets/papers/paper_11.pdf catboost原理: One-hot编码可以在预处理阶段或在训练期间 ...
- PL/SQL如何设置当前格局确保每次打开都给关闭前一样
打开plsql --> windows-->save layout 即可
- 踩坑记(1)——使用slf4j+logback记录日志
刚开始的jar包版本如下,因为选择jar包版本不同导致的一些坑,踩过了就记录下来: <spring.version>3.1.0.RELEASE</spring.version> ...
- 解题:国家集训队 Crash 的文明世界
题面 这种套着高次幂的统计问题一般都要用到第二类斯特林数和自然数幂的关系:$a^k=\sum\limits_{i=0}^{k}S_k^iC_a^i*i!$ 那么对于每个点$x$有: $ans_x=\s ...
- 洛谷P4486 Kakuro
题意:你有一个棋盘,某些格子是限制条件,形如"从这里开始下面所有连续空格的和为a"或"从这里开始向右的所有连续空格之和为b"一个格子可以同时拥有两个限制条件. ...
- 【codevs1065】01字符串
题目大意:输出仅由 0 和 1 组成的长度为 N 的字符串个数,并且其中不能含有 3 个连续的相同子串. 题解:数据太水,正规解法应该是枚举后缀进行判断. 代码如下 #include <bits ...
- 界面编程之QT的线程20180731
/*******************************************************************************************/ 一.为什么需 ...
- VUE.JS 窗口发生变化时,获取当前窗口的高度。
VUE.JS # 窗口发生变化时,获取当前窗口的高度. mounted () { const that = this; window.onresize = () => { return (() ...
- git 中断 merge
git 版本 >= 1.6.1 git reset --merge git 版本 >= 1.7.4 git merge --abort
- MySQL数据库以及表的管理
MySQL数据库以及表的管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 今天我们探讨的话题就是如何使用MySQL做开发,我们运维的主要工作不是去开发SQL的,但尽管如此,我们有 ...