1、背景

前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率。

本文将针对某个网站的验证码进行样本训练,形成自己的语言库,来提高验证码识别率。

2、准备工具

tesseract样本训练有一个官方流程说明,https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract#run-tesseract-for-training,不过都是英文的,个人认为这个地址适合于查找细节问题,全程看E文对大众还是有一定的困难。

具体的方法有两种:1-利用三方工具,2-完全命令行操作,三方工具主要在https://github.com/tesseract-ocr/tesseract/wiki/AddOns下载,本文将用到jTessBoxEditor这个工具,我们先给他下载到本地。

需要特别说明,这个工具是基于java虚拟机运行的,所以我们还要下载并安装一个java虚拟机,下载地址:http://download.oracle.com/otn-pub/java/jdk/8u91-b14/jdk-8u91-windows-x64.exe?AuthParam=1463733597_1161f2d895aa7606ed260b43b83d5f86

总结一下:

1、工具2 java虚拟机  Ver 1.8.0_91 64位版本 (oracle官网)

2、工具1 jtessboxeditor  Ver 1.5版本 (jtessboxeditor官网),运行界面如下:

3、使用实例

1)、准备样本图片

手动刷新某网站验证码,手动或者写程序,保存了101个验证码样本文件,分别命名成:1.png,2.png,……,101.png。

该验证码有几个特点:a、定长4位,b、都是数字,c、有背景干扰,但比较简单,d、字体为红色。

为了提高识别率,首先做了一个工作就是灰度化处理,并全部转换成tif文件,分别命名成:1.tif,2.tif,……,101.tif,统一存放在d:\python\lnypcg下。

2)、合并样本图片

打开jtessboxeditor,点击Tools->Merge Tiff ,按住shift键选择前文提到的101个tif文件,并把生成的tif合并到新目录d:\python\lnypcg\new下,命名为langyp.fontyp.exp0.tif。

注意:langyp 是本人定义的语言名称,fontyp是本人定义的字体名称,后续都会用到,你可以修改成你喜欢的名字

3)、生成box文件

执行命令生成langyp.fontyp.exp0.box文件

tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 batch.nochop makebox

D:\python\lnypcg\new>tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 batch.nochop makebox
Tesseract Open Source OCR Engine v3.02 with Leptonica
Page 1 of 101
Page 2 of 101
Page 3 of 101
……
Page 101 of 101 D:\python\lnypcg\new>dir
驱动器 D 中的卷没有标签。
卷的序列号是 36D9-CDC7 D:\python\lnypcg\new 的目录 2016-06-03 14:37 <DIR> .
2016-06-03 14:37 <DIR> ..
2016-06-03 14:30 6,327 langyp.fontyp.exp0.box
2016-06-03 13:07 126,056 langyp.fontyp.exp0.tif
2 个文件 132,383 字节
2 个目录 24,869,994,496 可用字节

4)、修改box文件

切换到jTessBoxEditor工具的Box Editor页,点击open,打开前面的tiff文件langyp.fontyp.exp0.tif,工具会自动加载对应的box文件。

检查box数据,如下图所示,数字8被误认成字母H,手工修改H成8,并保存。

点击下图红色框的按钮,逐个核对tif文件的box数据,全部检查结束并保存。

5)、生成font_properties

执行echo命令生成font_properties。

echo fontyp 0 0 0 0 0 >font_properties

也可以手工新建一个名为font_properties的文本文件(注意该文件没有扩展名),内容为字体名fontyp,后面带5个0,分别代表字体的粗体、斜体等属性,这里全部是0

D:\python\lnypcg\new>echo fontyp 0 0 0 0 0 >font_properties

D:\python\lnypcg\new>type font_properties
fontyp 0 0 0 0 0

6)、生成训练文件

执行命令,生成langyp.fontyp.exp0.tr训练文件

tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 nobatch box.train

D:\python\lnypcg\new>tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 nobatch box.train
Tesseract Open Source OCR Engine v3.02 with Leptonica
Page 1 of 101
row xheight=8.66667, but median xheight = 10
APPLY_BOXES:
Boxes read from boxfile: 4
Found 4 good blobs.
Generated training data for 1 words
……
……
……
Page 101 of 101
row xheight=8.66667, but median xheight = 10
APPLY_BOXES:
Boxes read from boxfile: 4
Found 4 good blobs.
Generated training data for 1 words D:\python\lnypcg\new 的目录 2016-06-03 16:34 <DIR> .
2016-06-03 16:34 <DIR> ..
2016-06-03 16:05 16 font_properties
2016-06-03 14:30 6,327 langyp.fontyp.exp0.box
2016-06-03 13:07 126,056 langyp.fontyp.exp0.tif
2016-06-03 16:20 618,844 langyp.fontyp.exp0.tr
2016-06-03 16:20 202 langyp.fontyp.exp0.txt
5 个文件 751,445 字节
2 个目录 24,869,101,568 可用字节

7)、生成字符集文件

执行命令,生成名为unicharset的字符集文件。

unicharset_extractor langyp.fontyp.exp0.box

D:\python\lnypcg\new>unicharset_extractor langyp.fontyp.exp0.box
Extracting unicharset from langyp.fontyp.exp0.box
Wrote unicharset file ./unicharset. D:\python\lnypcg\new>dir
驱动器 D 中的卷没有标签。
卷的序列号是 36D9-CDC7 D:\python\lnypcg\new 的目录 2016-06-03 16:41 <DIR> .
2016-06-03 16:41 <DIR> ..
2016-06-03 16:05 16 font_properties
2016-06-03 14:30 6,327 langyp.fontyp.exp0.box
2016-06-03 13:07 126,056 langyp.fontyp.exp0.tif
2016-06-03 16:20 618,844 langyp.fontyp.exp0.tr
2016-06-03 16:20 202 langyp.fontyp.exp0.txt
2016-06-03 16:41 712 unicharset
6 个文件 752,157 字节
2 个目录 24,869,171,200 可用字节

8)、生成shape文件

执行命令,生成shape文件

shapeclustering -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr

D:\python\lnypcg\new>shapeclustering -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
Reading langyp.fontyp.exp0.tr ...
Building master shape table
Computing shape distances...
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances...
Stopped with 0 merged, min dist 999.000000
Computing shape distances...
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0 1 2 3 4 5 6 7 8 9 10
Stopped with 0 merged, min dist 0.057803
Master shape_table:Number of shapes = 11 max unichars = 1 number with multiple unichars = 0 D:\python\lnypcg\new>dir
驱动器 D 中的卷没有标签。
卷的序列号是 36D9-CDC7 D:\python\lnypcg\new 的目录 2016-06-03 17:24 <DIR> .
2016-06-03 17:24 <DIR> ..
2016-06-03 17:20 19 font_properties
2016-06-03 14:30 6,327 langyp.fontyp.exp0.box
2016-06-03 13:07 126,056 langyp.fontyp.exp0.tif
2016-06-03 17:23 618,844 langyp.fontyp.exp0.tr
2016-06-03 17:23 202 langyp.fontyp.exp0.txt
2016-06-03 17:24 723 langyp.unicharset
2016-06-03 17:24 202 shapetable
2016-06-03 17:24 712 unicharset
8 个文件 753,085 字节
2 个目录 24,868,278,272 可用字节

9)、生成聚集字符特征文件

执行命令,生成3个特征字符文件,unicharset、inttemp、pffmtable

mftraining -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr

D:\python\lnypcg\new>mftraining -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
Read shape table shapetable of 11 shapes
Reading langyp.fontyp.exp0.tr ...
Done!

10)、生成字符正常化特征文件

执行命令,生成正常化特征文件normproto。

cntraining langyp.fontyp.exp0.tr

D:\python\lnypcg\new>cntraining langyp.fontyp.exp0.tr
Reading langyp.fontyp.exp0.tr ...
Clustering ...

11)、更名

执行命令,把步骤9,步骤10生成的特征文件进行更名。

rename normproto fontyp.normproto
rename inttemp fontyp.inttemp
rename pffmtable fontyp.pffmtable
rename unicharset fontyp.unicharset
rename shapetable fontyp.shapetable

D:\python\lnypcg\new>rename normproto fontyp.normproto

D:\python\lnypcg\new>rename inttemp fontyp.inttemp

D:\python\lnypcg\new>rename pffmtable fontyp.pffmtable

D:\python\lnypcg\new>rename unicharset fontyp.unicharset

D:\python\lnypcg\new>rename shapetable fontyp.shapetable

12)、合并训练文件

执行命令,生成fontyp.traineddata文件。

combine_tessdata fontyp.

注意:

a、fontyp.traineddata文件最终要拷贝tesseract安装目录的tessdata目录下,才能被tesseract找到。

b、命令行最后必须带一个点。

c、执行结果中,1,3,4,5,13这几行必须有数值,才代表命令执行成功。

D:\python\lnypcg\new>combine_tessdata fontyp.
Combining tessdata files
TessdataManager combined tesseract data files.
Offset for type 0 is -1
Offset for type 1 is 140

Offset for type 2 is -1
Offset for type 3 is 852
Offset for type 4 is 137760
Offset for type 5 is 137850

Offset for type 6 is -1
Offset for type 7 is -1
Offset for type 8 is -1
Offset for type 9 is -1
Offset for type 10 is -1
Offset for type 11 is -1
Offset for type 12 is -1
Offset for type 13 is 139352

Offset for type 14 is -1
Offset for type 15 is -1
Offset for type 16 is -1

13)测试使用

譬如前文的28.tif中8被误认为字母S,用新的字体看是否还出错。

D:\python\lnypcg>tesseract 28.tif output -l eng -psm 7
Tesseract Open Source OCR Engine v3.02 with Leptonica D:\python\lnypcg>type output.txt
S094
#1调用默认的eng语言,8被识别成S D:\python\lnypcg>tesseract 28.tif output -l fontyp -psm 7
Error opening data file C:\Program Files (x86)\Tesseract-OCR\tessdata/fontyp.traineddata
Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your "tessdata" directory.
Failed loading language 'fontyp'
Tesseract couldn't load any languages!
Could not initialize tesseract.
#2条用新的fontyp语言,tesseract找不到fontyp语言。
D:\python\lnypcg>copy .\new\fontyp.traineddata "C:\Program Files (x86)\Tesseract-OCR\tessdata"
已复制 1 个文件。
#3复制fontyp.traineddata到tesseract的安装目录的tessdata子目录下
D:\python\lnypcg>tesseract 28.tif output -l fontyp -psm 7
Tesseract Open Source OCR Engine v3.02 with Leptonica D:\python\lnypcg>type output.txt
8094
#使用fontyp语言成功识别8094

4、总结:

Anyway,jtessboxeditor 工具其实是一个基本成型的三方样本训练工具,它的功能就是自动执行上述脚本命令,但是在实际使用中,还存在不够完善的地方,譬如不能加psm参数,生成shape时经常程序异常崩溃,所以本文操作还是以命令行为主。

tesseract是一个非常强大的ocr引擎,尤其是做了针对性训练之后,验证码识别率几乎可以达到95%以上,再在程序中增加一些判断机制,基本上可以满足爬虫自动登陆需求了,回头写一个某东的自动识别验证码的爬虫程序。

把前文提的简化一下,综合成如下步骤列表:

1、合并图片
2、生成box文件
tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 batch.nochop makebox
3、修改box文件
4、生成font_properties
echo fontyp 0 0 0 0 0 >font_properties
5、生成训练文件
tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 nobatch box.train
6、生成字符集文件
unicharset_extractor langyp.fontyp.exp0.box
7、生成shape文件
shapeclustering -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
8、生成聚集字符特征文件
mftraining -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
9、生成字符正常化特征文件
cntraining langyp.fontyp.exp0.tr
10、更名
rename normproto fontyp.normproto
rename inttemp fontyp.inttemp
rename pffmtable fontyp.pffmtable
rename unicharset fontyp.unicharset
rename shapetable fontyp.shapetable
11、合并训练文件,生成fontyp.traineddata
combine_tessdata fontyp.

以上!

jTessBoxEditor工具进行Tesseract3.02.02样本训练的更多相关文章

  1. 利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率

    1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...

  2. 利用jTessBoxEditor工具进行Tesseract-OCR样本训练

    jTessBoxEditor依赖java虚拟机 , 所以要先安装 java. jTessBoxEditor下载地址: https://sourceforge.net/projects/vietocr/ ...

  3. Tesseract-OCR 字符识别---样本训练 [转]

    Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文).  ...

  4. Tesseract-OCR 字符识别---样本训练

    Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文).  ...

  5. 转 Tesseract-OCR 字符识别---样本训练

    转自:http://blog.csdn.net/feihu521a/article/details/8433077 Tesseract是一个开源的OCR(Optical Character Recog ...

  6. Python3.x:pytesseract识别率提高(样本训练)

    Python3.x:pytesseract识别率提高(样本训练) 1,下载并安装3.05版本的tesseract 地址:https://sourceforge.net/projects/tessera ...

  7. 02.02.03第3章 餐饮项目案例(Power BI商业智能分析)

    02.02.03第3章 餐饮项目案例 02.02.03.01餐饮数据理解与读入 00:06:12 02.02.03.02餐饮数据处理 00:29:57 处理生成的表为: 02.02.03.03餐饮数据 ...

  8. 02.02.02 第2章 制作power bi图表(Power BI商业智能分析)

    ---恢复内容开始--- 02.02.02第2章 制作power bi图表 02.02.02.01 power pivot数据导入 00:08:43 02.02.02.02建立数据透视表 00:11: ...

  9. 02.02.01 第1章 简介及基础操作(Power BI商业智能分析)

    02.02.01.01 powerbi简介 00:10:59 02.02.01.02 query数据导入 00:03:26 具体操作实例如下: 02.02.01.03导入access数据 00:05: ...

随机推荐

  1. Spring之jdbcTemplate:增删改

    JdbcTemplate增删改数据操作步骤:1.导入jar包:2.设置数据库信息:3.设置数据源:4.调用jdbcTemplate对象中的方法实现操作 package helloworld.jdbcT ...

  2. 【Vue学习笔记1】基于Vue2.2.6版本

    记录一下自己关于Vue学习的过程,便于以后归纳整理以及复习. 1.下载引用vue.js 下载: npm install vue ,然后引用. 或直接线上引用: <script src=" ...

  3. BZOJ2431 HAOI2009逆序对数列(动态规划)

    对于排列计数问题一般把数按一个特定的顺序加入排列.这个题做法比较显然,考虑将数从小到大加入排列即可. #include<iostream> #include<cstdio> # ...

  4. 【poj3693】 Maximum repetition substring

    http://poj.org/problem?id=3693 (题目链接) 题意 给定一个字符串,求重复次数最多的连续重复子串,若存在多组解,输出字典序最小的. Solution 后缀数组论文题,就是 ...

  5. Aop学习笔记

    在学习编程这段时间我想大家都是习惯了面向过程或者面向对象的思想来编程,较少或者没有接触过面向方面编程的思想. 那么什么是面向方面(Aspect)——其实就是与核心业务处理逻辑无关的切面,例如记录日志. ...

  6. Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算)

    Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算) Description T 公司发现其研制的一个软件中有 n 个错误,随即为该软件发放 ...

  7. JAVA字符串格式化-String.format()的使用 【生成随机数补0操作】

    转: JAVA字符串格式化-String.format()的使用 常规类型的格式化 String类的format()方法用于创建格式化的字符串以及连接多个字符串对象.熟悉C语言的同学应该记得C语言的s ...

  8. Kubernetes Service

    目录 基本概念 服务发现与负载均衡 配置Service 创建一个ClusterIP类型的Service 创建一个指定ClusterIP的Service 创建一个headless service 创建一 ...

  9. 「Django」contenttypes基本用法

    当一张表和多个表ForeignKey关联,并且多个FK中只能选择其中一个或其中n个时,可以利用contenttypes,只需定义三个字段就搞定! contenttypes 是Django内置的一个应用 ...

  10. ceilometer主要组件分析

    一.Agent 主要有compute agent 和central agent,还有一些其他的agent这里暂时不分析. agent初始化时会动态加载给定namespace的pollster插件,并通 ...