python 回溯法 子集树模板 系列 —— 3、0-1背包问题
问题
给定N个物品和一个背包。物品i的重量是Wi,其价值位Vi ,背包的容量为C。问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大?
分析
显然,放入背包的物品,是N个物品的所有子集的其中之一。N个物品中每一个物品,都有选择、不选择两种状态。因此,只需要对每一个物品的这两种状态进行遍历。
解是一个长度固定的N元0,1数组。
套用回溯法子集树模板,做起来不要太爽!!!
代码
'''0-1背包问题'''
n = 3 # 物品数量
c = 30 # 包的载重量
w = [20, 15, 15] # 物品重量
v = [45, 25, 25] # 物品价值
maxw = 0 # 合条件的能装载的最大重量
maxv = 0 # 合条件的能装载的最大价值
bag = [0,0,0] # 一个解(n元0-1数组)长度固定为n
bags = [] # 一组解
bestbag = None # 最佳解
# 冲突检测
def conflict(k):
global bag, w, c
# bag内的前k个物品已超重,则冲突
if sum([y[0] for y in filter(lambda x:x[1]==1, zip(w[:k+1], bag[:k+1]))]) > c:
return True
return False
# 套用子集树模板
def backpack(k): # 到达第k个物品
global bag, maxv, maxw, bestbag
if k==n: # 超出最后一个物品,判断结果是否最优
cv = get_a_pack_value(bag)
cw = get_a_pack_weight(bag)
if cv > maxv : # 价值大的优先
maxv = cv
bestbag = bag[:]
if cv == maxv and cw < maxw: # 价值相同,重量轻的优先
maxw = cw
bestbag = bag[:]
else:
for i in [1,0]: # 遍历两种状态 [选取1, 不选取0]
bag[k] = i # 因为解的长度是固定的
if not conflict(k): # 剪枝
backpack(k+1)
# 根据一个解bag,计算重量
def get_a_pack_weight(bag):
global w
return sum([y[0] for y in filter(lambda x:x[1]==1, zip(w, bag))])
# 根据一个解bag,计算价值
def get_a_pack_value(bag):
global v
return sum([y[0] for y in filter(lambda x:x[1]==1, zip(v, bag))])
# 测试
backpack(0)
print(bestbag, get_a_pack_value(bestbag))
效果图

python 回溯法 子集树模板 系列 —— 3、0-1背包问题的更多相关文章
- python 回溯法 子集树模板 系列 —— 18、马踏棋盘
问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...
- python 回溯法 子集树模板 系列 —— 17、找零问题
问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...
- python 回溯法 子集树模板 系列 —— 16、爬楼梯
问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...
- python 回溯法 子集树模板 系列 —— 15、总结
作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...
- python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)
问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...
- python 回溯法 子集树模板 系列 —— 10、m着色问题
问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...
- python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)
问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...
- python 回溯法 子集树模板 系列 —— 8、图的遍历
问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...
- python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题
问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...
随机推荐
- windows下安装并启动hadoop2.7.2
64位windows安装hadoop没必要倒腾Cygwin,直接解压官网下载hadoop安装包到本地->最小化配置4个基本文件->执行1条启动命令->完事.一个前提是你的电脑上已经安 ...
- Java的8种基本数据类型和3种引用数据类型
背景 最近被一个问题难倒:问到Java的基本数据类型有8种,具体是哪几个?一起复习下: Java数据类型概述 变量就是申请内存来存储值,即当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量 ...
- Oracle EBS 查看双节点是否做了信任
perl $AD_TOP/patch/115/bin/txkRunSSHSetup.pl verifyssh -contextfile=$CONTEXT_FILE -hosts=erpapp1,erp ...
- 利用percona-toolkit定位数据库性能问题
当你的性能瓶颈卡在数据库这块的时候,可以通过percona-toolkit来进行问题定位. 那么,首先,介绍下percona-toolkit.percona-toolkit是一组高级命令行工具的集合, ...
- MySQL 支持utf8mb4
utf8mb4 utf8mb3 utf8 Refer to The utf8mb4 Character Set The utf8 Character Set (Alias for utf8mb3) M ...
- [Spark Streaming_1] Spark Streaming 概述
0. 说明 Spark Streaming 介绍 && 在 IDEA 中编写 Spark Streaming 程序 1. Spark Streaming 介绍 Spark Stream ...
- 深入浅出Web开发——Fiddler
环境配置: 如果使用Chrome,Fiddler无法捕捉HTTP请求信息,请检查Chrome是否使用SwitchyOmega插件.
- hadoop集群为分布式搭建
1.准备Linux环境设置虚拟机网络 1.0点击VMware快捷方式,右键打开文件所在位置 -> 双击vmnetcfg.exe -> VMnet1 host-only ->修改 ...
- Java读取json文件并对json数据进行读取、添加、删除与修改操作
转载:http://blog.csdn.net/qing_yun/article/details/46865863#t0 1.介绍 开发过程中经常会遇到json数据的处理,而单独对json数据进行 ...
- PyQt5--QPixmap
# -*- coding:utf-8 -*- ''' Created on Sep 20, 2018 @author: SaShuangYiBing Comment: ''' import sys f ...