简化版题意:

一个国家由\(n\)个城市组成一颗树,要将其划分为\(n\)个省

每个城市大小为\([B,3B]\),每个省有一个省会(不一定要在省内),使得每个省的所有城市到省会的路径上不能经过其他省。

首先我们可以明确,原图中的一颗完整子树一定是满足要求的。

那么我们可以这样思考,维护一个栈,由下至上递归进行合并

若当前子树的城市树已经大于B,那么我们将其合并

这样一次失败的省划分最多余留下的节点为b-1,这样每个块最大大小为2b-1,满足要求

但是,会出现一个问题,有可能当前子树未达到,而加上另一个子树就达到了B,但是按照递归顺序,这两棵子树是不连通的,那应怎么办呢?

我们可以维护一个标记limit,记录递归前栈内元素个数,这样的话就可以有效避免这个问题的发生。

但是,题目为什么要给到3B呢?

这是因为在我们遍历完所有节点后,有可能还剩余一些节点(最多为B个)。这样的话,根据上面的推断,我们可以直接将其并入最后一个块,大小最大为3B-1,符合题目要求。

于是这道题目就愉快的解决辣!


贴代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=3e4;
int n,b;
struct cc{
int to,nex;
}e[maxn];
int head[maxn],cnt,tag[maxn],rt[maxn],tot;
void add(int a,int b)
{
++cnt;
e[cnt].to=b;
e[cnt].nex=head[a];
head[a]=cnt;
}
stack<int> s;
void dfs(int u,int fa)
{
int lim=s.size();
for(int i=head[u];i;i=e[i].nex)
{
int v=e[i].to;
if(v!=fa)
dfs(v,u);
if(s.size()-lim>=b)
{
rt[++tot]=u;
while(s.size()>lim){
tag[s.top()]=tot;
s.pop();
}
}
}
s.push(u);
}
int main()
{
int x,y;
scanf("%d%d",&n,&b);
for(int i=1;i<n;++i)
scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs(1,0);
if(!tot) rt[++tot]=1;
while(!s.empty()) tag[s.top()]=tot,s.pop();
printf("%d\n",tot);
for(int i=1;i<=n;++i)
printf("%d ",tag[i]);
printf("\n");
for(int i=1;i<=tot;++i)
printf("%d ",rt[i]);
return 0;
}

洛谷 P2325 [SCOI2005]王室联邦的更多相关文章

  1. 洛谷P2325 [SCOI2005]王室联邦

    P2325 [SCOI2005]王室联邦 题目描述 "余"人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理. 他的国家有n个城市, ...

  2. 洛谷.2325.[SCOI2005]王室联邦(贪心)

    题目链接 比较水的题 然而.. 首先可以考虑DFS 每B个分一个块,但是这样链底不会和上边相连 于是考虑从底下开始分,即在DFS完一个点时才将其加入栈中:当子树size==B时出栈 最后在根节点可能会 ...

  3. P2325 [SCOI2005]王室联邦 解题报告

    P2325 [SCOI2005]王室联邦 题目描述 "余"人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理. 他的国家有\(n\) ...

  4. P2325 [SCOI2005]王室联邦

    题目描述 “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理. 他的国家有n个城市,编号为1..n.一些城市之间有道路相连,任意两个不同的城市之间 ...

  5. luogu P2325 [SCOI2005]王室联邦

    传送门 做法是dfs整棵树,当访问一个点\(x\)时,先访问儿子,若某个时刻子树大小\(\ge b\)时,就把那些点放在一个省里,省会记为\(x\),访问完儿子再把\(x\)加入栈.最后栈中剩余的没加 ...

  6. BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1399  Solved: ...

  7. 【块状树】BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 826  Solved:  ...

  8. 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1554  Solved: ...

  9. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

随机推荐

  1. [转载]css菜鸟之HTML 中块级元素设置 height:100% 的实现

    HTML 中块级元素设置 height:100% 的实现 当你设置一个页面元素的高度(height)为100%时,期望这样元素能撑满整个浏览器窗口的高度,但大多数情况下,这样的做法没有任何效果. 为什 ...

  2. 【土旦】 使用Vant 的Uploader 上传图片 重定义返回格式 使用FormData格式提交

    前言 开发一个图片上传功能 需求要用vant中的Uploader , 发现 Uploader组件官方封装返回的数据是加密的,不适合我这个项目(需要上传到本地ftp服务器), 看了一下官方 issue ...

  3. Java初学习-常见单词

    implements    实行/实现      用于实现接口(interface) extends           延伸/扩展         用于类的继承 container        容 ...

  4. 转int啥啥啥的

    1.String转int类型的话.需要用Double.valueof("这写String类型的数据").intValue(); 2.保留小数点: float scale = (fl ...

  5. jar包 pom

    动态的web工程tomcat 自带jar包: jstl: taglibs-standard-impl-1.2.5.jar taglibs-standard-spec-1.2.5.jar   //以下是 ...

  6. linux/shell/bash 自动输入密码或文本

    linux有些命令需要输入密码,比如ssh或su,又不能通过参数指定,正常只能手动输入.这让人多少有些懊恼,尽管这样很安全! 破解:expect 默认没这个东西,需要安装 apt/yum instal ...

  7. PostgreSQL For Windows 全功能精简版

    预览 精简部分 保留全部 PostgreSQL 相关功能 删除自带的 pgadmin 4 删除文档 删除开发用头文件 删除开发用静态连接库 删除 Stack Build 工具 写了一个管理数据库用的批 ...

  8. Redis 由浅入深

    1.redis是什么? redis是nosql(也是个巨大的map) 单线程,但是可处理1秒10w的并发(数据都在内存中) 使用java对redis进行操作类似jdbc接口标准对mysql,有各类实现 ...

  9. FPGA设计千兆以太网MAC(2)——以太网协议及设计规划

    上篇该系列博文中通过MDIO接口实现了PHY芯片的状态检测,验证其已处于1000M 全双工工作模式.在设计MAC逻辑之前,要先清楚MAC与PHY之间的接口以及以太网协议细节,这样才能保证网络的兼容性. ...

  10. VS2017内存占用高

    我的环境和硬件参数 说明:本篇所提到的方法在我的机器上经过设置是能明显改善卡顿的,但可能你的VS卡顿的原因不一定是本文所提到的,可以通过排除法找到问题所在. 我的环境和硬件参数: vs 2017 pr ...