【BZOJ1004】Cards(组合数学,Burnside引理)

题面

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有

多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方

案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.

两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗

成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。

接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,

表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代

替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7

2 3 1

3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

题解

Burnside引理:

对于一个置换群

等价类的个数,等于所有置换的不动点的平均数

所以,这道题目相当于有\(m+1\)个置换

求总的不动点个数

其中,置换包括不变和题目给定的\(m\)个

然后是求不动点的个数的问题

每一个置换相当于若干个循环

如果是不动点的话,

循环中的每个点的颜色应当相同

于是大力跑一个01背包就好了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 100
#define MOD P
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int s1,s2,s3,m,P,n,ans;
int a[MAX][MAX],size[MAX];
int f[MAX][MAX][MAX];
bool vis[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%P;a=1ll*a*a%P;b>>=1;}
return s;
}
int DP(int x)//求关于第x置换的不动点的个数
{
memset(size,0,sizeof(size));
memset(vis,0,sizeof(vis));
int sum=0;//拆成循环
for(int i=1;i<=n;++i)
if(!vis[i])
{
size[++sum]=1;vis[i]=true;
int p=i;
while(!vis[a[x][p]])size[sum]++,vis[p=a[x][p]]=true;
}
memset(f,0,sizeof(f));
f[0][0][0]=1;
for(int t=1;t<=sum;++t)
for(int i=s1;i>=0;--i)
for(int j=s2;j>=0;--j)
for(int k=s3;k>=0;--k)
{
if(i>=size[t])f[i][j][k]=(f[i][j][k]+f[i-size[t]][j][k])%MOD;
if(j>=size[t])f[i][j][k]=(f[i][j][k]+f[i][j-size[t]][k])%MOD;
if(k>=size[t])f[i][j][k]=(f[i][j][k]+f[i][j][k-size[t]])%MOD;
}
return f[s1][s2][s3];
}
int main()
{
s1=read();s2=read();s3=read();m=read();P=read();
n=s1+s2+s3;
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
a[i][j]=read();
++m;
for(int i=1;i<=n;++i)a[m][i]=i;//不动也是一种置换
for(int i=1;i<=m;++i)
ans=(ans+DP(i))%MOD;
printf("%lld\n",1ll*ans*fpow(m,P-2)%P);
return 0;
}

【BZOJ1004】Cards(组合数学,Burnside引理)的更多相关文章

  1. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  2. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  3. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  4. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  5. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  6. BZOJ1004 HNOI2008Cards(Burnside引理+动态规划)

    直接给了一个置换群(当然要自己手动加上不洗牌的情况).考虑求不动点数量即可.对于一个置换,求出所有循环的长度,然后设f[i][x][y]为给前i个循环着色后,用了x张红色卡片.y张绿色卡片的方案数,d ...

  7. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  8. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  9. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

随机推荐

  1. IOS开发之记录用户登陆状态,ios开发用户登陆

    IOS开发之记录用户登陆状态,ios开发用户登陆 上一篇博客中提到了用CoreData来进行数据的持久化,CoreData的配置和使用步骤还是挺复杂的.但熟悉CoreData的使用流程后,CoreDa ...

  2. Linux-安装FFmpeg

    FFmpeg官网:http://www.ffmpeg.org 官网介绍 FFmpeg is the leading multimedia framework, able to decode, enco ...

  3. PHP Extension开发(Zephir版本)

    上篇介绍了C语言开发PHP扩展的方法, 现在介绍使用Zephir开发扩展的方法. 关于Zephir需要简单介绍一下: Zephir 是为PHP开发人员提供的能够编写可编译/静态类型的高级语言.是优秀的 ...

  4. python进阶学习笔记(一)

    python进阶部分要学习的内容: 学习目标: 1.函数式编程 1.1,什么是函数式编程 函数式编程是一种抽象计算的编程模式 不同语言的抽象层次不同: 函数式编程的特点: python支持的函数式编程 ...

  5. js match函数注意

    match函数 String.prototype.match 参数 regexp 返回 返回包含所有匹配的数组,如果匹配失败返回Null. 数组第一项是整段字符串的匹配,第二项至以后都是捕获匹配. 注 ...

  6. C语言_简单的阶乘函数

    include <stdio.h> long jc (int num); long jc2 (int num); int main() { long n; n = jc(); printf ...

  7. Java三大特性(封装,继承,多态)

    Java中有三大特性,分别是封装继承多态,其理念十分抽象,并且是层层深入式的. 一.封装 概念:封装,即隐藏对象的属性和实现细节,仅对外公开接口,控制在程序中属性的读和修改的访问级别:将抽象得到的数据 ...

  8. Redis笔记3-redis事务

    Redis的事务机制允许同时执行多条指令,它是原子性操作,事务中的命令要么全部执行,要么全部不执行,另外,事务中的所有指令都会被序列化,而且其开始执行过程中,不回被即时过来的指令所打断,其需要经历三个 ...

  9. nginx笔记6-总结

    1.轮询(默认)每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除.2.weight指定轮询几率,weight和访问比率成正比,用于后端服务器性能不均的情况.3.ip_ ...

  10. csrf

    什么是CSRF: CSRF(Cross-site request forgery),中文名称:跨站请求伪造 攻击者盗用了你的身份,以你的名义发送恶意请求.CSRF能够做的事情包括:以你名义发送邮件,发 ...