【BZOJ1003】物流运输(动态规划,最短路)
【BZOJ1003】物流运输(动态规划,最短路)
题面
Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。
接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。
再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1 < = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本 = n天运输路线长度之和 + K * 改变运输路线的次数。
Sample Input
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
32
Hint
样例提示:
前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2) * 3+(3+2) * 2+10=32
题解
首先,如果不考虑路径的问题,如果告诉你每一段时间的费用,让你\(DP\),这是很显然,很简单的。
考虑到数据范围如此之小,那么,我们就直接暴力\(SPFA\)预处理每一段时间的费用,然后\(O(n^2)DP\)即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 120
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAX*200];
int h[MAX],cnt=1,n,m,K,E;
bool vis[MAX];
bool Use[200][30],uu[50];
int Dis[200][200],dis[50];
long long f[200];
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
inline bool check(int p,int l,int r)
{
for(int i=l;i<=r;++i)
if(Use[i][p])
return false;
return true;
}
inline void SPFA(int l,int r)
{
for(int i=1;i<=m;++i)uu[i]=check(i,l,r);
memset(dis,63,sizeof(dis));dis[1]=0;
memset(vis,0,sizeof(vis));vis[1]=true;
queue<int> Q;Q.push(1);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!uu[v])continue;
int w=e[i].w+dis[u];
if(dis[v]>w)
{
dis[v]=w;
if(!vis[v])
{
vis[v]=true;
Q.push(v);
}
}
}
vis[u]=false;
}
Dis[l][r]=dis[m];
}
int main()
{
n=read();m=read();K=read();E=read();
for(int i=1,u,v,w;i<=E;++i)
{
u=read();v=read();w=read();
Add(u,v,w);Add(v,u,w);
}
int D=read();
for(int i=1;i<=D;++i)
{
int P=read(),a=read(),b=read();
for(int j=a;j<=b;++j)Use[j][P]=true;
}
for(int i=1;i<=n;++i)
for(int j=i;j<=n;++j)
SPFA(i,j);
for(int i=1;i<=n;++i)f[i]=1e11;
f[0]=-K;
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+1ll*Dis[j+1][i]*(i-j)+K);
printf("%lld\n",f[n]);
return 0;
}
【BZOJ1003】物流运输(动态规划,最短路)的更多相关文章
- bzoj1003物流运输 最短路+DP
bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...
- BZOJ_1003_[ZJOI2006]物流运输_最短路+dp
BZOJ_1003_[ZJOI2006]物流运输_最短路+dp 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1003 分析: 这种一段一段的显 ...
- BZOJ1003 物流运输 最短路+DP
1003: [ZJOI2006]物流运输 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条 ...
- BZOJ 1003 物流运输 (动态规划 SPFA 最短路)
1003: [ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 5590 Solved: 2293 [Submit][Stat ...
- BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)
1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...
- bzoj 1003 [ZJOI2006]物流运输(最短路+dp)
[ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 8973 Solved: 3839[Submit][Status][Di ...
- BZOJ-1003 物流运输trans SPFA+DP
傻逼错误耗我1h,没给全范围坑我1A.... 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Submit: 529 ...
- BZOJ 1003--[ZJOI2006]物流运输(最短路)
1003: [ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 10034 Solved: 4403 Description ...
- [BZOJ1003] [ZJOI2006] 物流运输trans (最短路 & dp)
Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...
- BZOJ 1003 物流运输【最短路】【动态规划】
这道题数据太小啦!先枚举i,j表示从第i天到第j天不更改航线的费用. 然后直接跑最短路算法(我用的是Q版男朋友算法) 动归方程显然是f[i] = min(f[i], f[j] + cost[j+1][ ...
随机推荐
- PHP7 Xdebug配置方式
方式一 到http://xdebug.org/files/php_xdebug-2.4.1-7.0-vc14.dll下载最新版的XDebug文件. 下载之后放到PHP7根目录下的ext子目录下. PH ...
- php详细学习1
PHP中的引用 $a="now magic"; $b=&$a; $b="abc"; echo $b.$a; 结果:abcabc $a="now ...
- PHP opcache扩展安装
下面是我在PHP 5.4下的安装方法: https://pecl.php.net/get/zendopcache-7.0.5.tgz tar xzf zendopcache-7.0.5.tgz cd ...
- 如何架构一个合适的企业API网关
API Gateway(API GW / API 网关),顾名思义,是出现在系统边界上的一个面向API的.串行集中式的强管控服务,这里的边界是企业IT系统的边界,主要起到隔离外部访问与内部系统的作用. ...
- nginx的环境配置的问题
在安装好nginx之后,运行nginx,报错: nginx dyld: Library not loaded: /usr/local/lib/libpcre.1.dylib Referenced fr ...
- React是什么,为什么要使用它?
React是Facrbook内部的一个JavaScript类库,已于1年开源,可用于创建Web用户交互界面.它引入了一种新的方式来处理浏览器DOM.那些需要手动更新DOM.费力地记录每一个状态的日子一 ...
- JavaScript递归原理
JavaScript递归是除了闭包以外,函数的又一特色呢.很多开发新手都很难理解递归的原理,我在此总结出自己对递归的理解. 所谓递归,可以这样理解,就是一个函数在自身的局部环境里通过自身函数名又调用, ...
- ap module omap4460
http://gitorious.org/ap-module-omap4460 Dashboard Register Login Activities Projects Teams ap module ...
- Android HTTP请求用HttpUrlConnection与HttpClient比较
在安卓和JAVA应用开发中需要访问网络,少不了要提交HTTP请求,而基本上目前有两个实现方式:HttpUrlConnection(即URL.openConnection)和HttpClient. 网上 ...
- java线程池的原理及实现
1.线程池简介: 多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力. 假设一个服务器完成一项任务所需时间为:T1 ...