缓存命中率的介绍

命中:可以直接通过缓存获取到需要的数据。

不命中:无法直接通过缓存获取到想要的数据,需要再次查询数据库或者执行其它的操作。原因可能是由于缓存中根本不存在,或者缓存已经过期。

通常来讲,缓存的命中率越高则表示使用缓存的收益越高,应用的性能越好(响应时间越短、吞吐量越高),抗并发的能力越强。

由此可见,在高并发的互联网系统中,缓存的命中率是至关重要的指标。

如何监控缓存的命中率

redis提供了INFO这个命令,能够随时监控服务器的状态,只用telnet到对应服务器的端口,执行命令即可:

telnet localhost 6379
info

在输出的信息里面有这几项和缓存的状态比较有关系:

keyspace_hits:14414110
keyspace_misses:3228654
used_memory:433264648
expired_keys:1333536
evicted_keys:1547380

通过计算hits和miss,我们可以得到缓存的命中率:14414110 / (14414110 + 3228654) = 81% ,一个缓存失效机制,和过期时间设计良好的系统,命中率可以做到95%以上

有个ruby gem叫redis-stat,它利用INFO命令展现出更直观的信息报表,推荐:
https://github.com/junegunn/redis-stat

同时,zabbix也提供了相关的插件对redis服务进行监控。

影响缓存命中率的几个因素

之前的章节中我们提到了缓存命中率的重要性,下面分析下影响缓存命中率的几个因素。

1.业务场景和业务需求

缓存适合“读多写少”的业务场景,反之,使用缓存的意义其实并不大,命中率会很低。

业务需求决定了对时效性的要求,直接影响到缓存的过期时间和更新策略。时效性要求越低,就越适合缓存。在相同key和相同请求数的情况下,缓存时间越长,命中率会越高。

互联网应用的大多数业务场景下都是很适合使用缓存的。

2.缓存的设计(粒度和策略)

通常情况下,缓存的粒度越小,命中率会越高。举个实际的例子说明:

当缓存单个对象的时候(例如:单个用户信息),只有当该对象对应的数据发生变化时,我们才需要更新缓存或者让移除缓存。而当缓存一个集合的时候(例如:所有用户数据),其中任何一个对象对应的数据发生变化时,都需要更新或移除缓存。

还有另一种情况,假设其他地方也需要获取该对象对应的数据时(比如其他地方也需要获取单个用户信息),如果缓存的是单个对象,则可以直接命中缓存,反之,则无法直接命中。这样更加灵活,缓存命中率会更高。

此外,缓存的更新/过期策略也直接影响到缓存的命中率。当数据发生变化时,直接更新缓存的值会比移除缓存(或者让缓存过期)的命中率更高,当然,系统复杂度也会更高。

3.缓存容量和基础设施

缓存的容量有限,则容易引起缓存失效和被淘汰(目前多数的缓存框架或中间件都采用了LRU算法)。同时,缓存的技术选型也是至关重要的,比如采用应用内置的本地缓存就比较容易出现单机瓶颈,而采用分布式缓存则毕竟容易扩展。所以需要做好系统容量规划,并考虑是否可扩展。此外,不同的缓存框架或中间件,其效率和稳定性也是存在差异的。

4.其他因素

当缓存节点发生故障时,需要避免缓存失效并最大程度降低影响,这种特殊情况也是架构师需要考虑的。业内比较典型的做法就是通过一致性Hash算法,或者通过节点冗余的方式。

有些朋友可能会有这样的理解误区:既然业务需求对数据时效性要求很高,而缓存时间又会影响到缓存命中率,那么系统就别使用缓存了。其实这忽略了一个重要因素--并发。通常来讲,在相同缓存时间和key的情况下,并发越高,缓存的收益会越高,即便缓存时间很短。

提高缓存命中率的方法

从架构师的角度,需要应用尽可能的通过缓存直接获取数据,并避免缓存失效。这也是比较考验架构师能力的,需要在业务需求,缓存粒度,缓存策略,技术选型等各个方面去通盘考虑并做权衡。尽可能的聚焦在高频访问且时效性要求不高的热点业务上(如字典数据、session、token),通过缓存预加载(预热)、增加存储容量、调整缓存粒度、更新缓存等手段来提高命中率。

对于时效性很高(或缓存空间有限),内容跨度很大(或访问很随机),并且访问量不高的应用来说缓存命中率可能长期很低,可能预热后的缓存还没来得被访问就已经过期了。

如何提高缓存命中率(Redis)的更多相关文章

  1. 关于如何提高缓存命中率(redis)

    一.缓存命中率的介绍 命中:可以直接通过缓存获取到需要的数据. 不命中:无法直接通过缓存获取到想要的数据,需要再次查询数据库或者执行其它的操作.原因可能是由于缓存中根本不存在,或者缓存已经过期. 通常 ...

  2. [MySQL性能优化系列]提高缓存命中率

    1. 背景 通常情况下,能用一条sql语句完成的查询,我们尽量不用多次查询完成.因为,查询次数越多,通信开销越大.但是,分多次查询,有可能提高缓存命中率.到底使用一个复合查询还是多个独立查询,需要根据 ...

  3. 合理配置MySQL缓存 提高缓存命中率

    众所周知,系统读取数据时,从内存中读取要比从硬盘上速度要快好几百倍.故现在绝大部分应用系统,都会最大程度的使用缓存(内存中的一个存储区域),来提高系统的运行效率.MySQL数据库也不例外.在这里,笔者 ...

  4. MySQL缓存命中率概述及如何提高缓存命中率

    MySQL缓存命中率概述 工作原理: 查询缓存的工作原理,基本上可以概括为: 缓存SELECT操作或预处理查询(注释:5.1.17开始支持)的结果集和SQL语句: 新的SELECT语句或预处理查询语句 ...

  5. Memcache 提高缓存命中率

    最近手上某个项目跟新代码,新的代码里大量采用memcahce作为缓存.所以开始深入了解memcache的内存分配策略.以前就听说有个PHP写的memcache监控脚本,在网上搜索了一下,果断下载下来用 ...

  6. Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%。再往后,每提高0.1%,优化难度成指数级增长了。哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额。 在高并发场景下,提供了保证线程安全的对象、方法。比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好。线程安全的StringBuilder取代S

    Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机 ...

  7. 基于Spring Cache实现二级缓存(Caffeine+Redis)

    一.聊聊什么是硬编码使用缓存? 在学习Spring Cache之前,笔者经常会硬编码的方式使用缓存. 我们来举个实际中的例子,为了提升用户信息的查询效率,我们对用户信息使用了缓存,示例代码如下: @A ...

  8. 再谈缓存和Redis

    自从上次分享<Redis到底该如何利用?>已经有1年多了,这1年经历了不少.从码了我们网站的第一行开始到现在,我们的缓存模块也不断在升级,这之中确实略有心得,最近也有朋友探讨缓存,觉得可以 ...

  9. 谈缓存和Redis

    自从上次分享<Redis到底该如何利用?>已经有1年多了,这1年经历了不少.从码了我们网站的第一行开始到现在,我们的缓存模块也不断在升级,这之中确实略有心得,最近也有朋友探讨缓存,觉得可以 ...

随机推荐

  1. C语言如何分离一个数的高低位,如何将2个字节变成一个字节

    关于这个概念,是我从工作中学习的,虽然在读书的时候就应该要掌握,但是在开发中,这项技能尤其重要.我是做嵌入式开发的,在嵌入式开发过程中,如何对数据操作必然是不可缺少的问题,接下来,我们来看一个例子: ...

  2. JavaScript进阶(六)用JavaScript读取和保存文件

    用JavaScript读取和保存文件 因为Google还不提供同步插件数据的功能,所以导入和导出插件配置就必须和文件打交道了.而出于安全原因,只有IE才提供访问文件的API:但随着HTML 5的到来, ...

  3. Java学习笔记(一)网格袋布局

    网格袋布局类似于Win8的Metro布局,用于将组件按大小比例放在不同位置的网格内,各组件的实际大小会随着窗口的改变而改变,但相对位置不变,能够很好的适应屏幕. 通过阅读<21天学通Java&g ...

  4. Cocos2D粒子发射器的纹理

    每个例子发射器只能使用单个纹理发射粒子. 如果你需要在相同粒子效果中组合多重纹理,你将不得不创建多重的发射器节点并且决定谁的粒子将在其它粒子之上或之下显示.

  5. SpriteBuilder实际操作中如何确定合适Breaking force的值

    确定Breaking force合适的值同样很单调,但是按照下面的方法也并不是完全不可能: 输入一个随意的值,比如说100 检查实际场景中关节是否能承受住物理物体,在完美的情况下物理物体将保持静止. ...

  6. saiku应用的调试

    ubuntu下解压saiku包后使用: 运行.sh命令(.bat是windows命令).运行时注意权限.可以先chmod a+x *.sh 提示,catali?.sh出错. 这是tomcat的一个文件 ...

  7. 10个精选的颜色选择器Javascript脚本及其jQuery插件

     Color picker即颜色选择器使我们在web开发中可能经常用到的组件,今天我们特意精选了10个超酷的颜色选择器实现,其中包括了javascript脚本 实现及其传说中的jQuery插件实现 ...

  8. PS 图像调整算法——反相

    这个顾名思义,对图像做减法. Image_new=1-Image_old; 原图: 反相:

  9. x&(x-1)

    x&(x-1)可以用来求出x是否为2幂次方数:当&的结果为0时,x原值是2幂次方数,否则就不是2幂次方数: x=x&(x-1)即把x从低位开始的第一个1改成0.如1000,把1 ...

  10. tomcat6 高并发配置 与优化

    server.xml配置 1.  <Connectorport="8080"protocol="HTTP/1.1" 2.  maxThreads=&quo ...