[SDOI 2008]沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
4 2
Sample Output
1
HINT
数据范围:
对于100%的数据,1 < = N , M < = 10000000
题解
首先显然在区间 $[1, M!]$ 内与 $M!$ 互素的数个数为 $\varphi(M!)$ 。
我们再考虑比 $M!$ 大的个数,值得注意的是我们存在这样一个性质:若 $x$ 与 $i$ (不)互质,则 $x+i$ 与 $i$ (不)互质。简要证明下:
现在我们证明对于整数 $x$ 若与 $i$ 互质,则 $x+i$ 也与 $i$ 互质。
采用反证法,我们假设 $gcd(x, i) = 1$ 但 $gcd(x+i, i) = b \neq 1$ 。
容易发现: \begin{cases} \begin{aligned} x+i = b\cdot k_1 \\ i = b \cdot k_2 \end{aligned} \end{cases} $k_1,k_2$ 均为整数。
所以 $x = (k_1-k_2)\cdot b$ ,故 $gcd(x, i) = b \neq 1$ ,与题设不符,原命题成立。
下证对于整数 $x$ 若与 $i$ 不互质,则 $x+i$ 也与 $i$ 不互质。
假设
$gcd(x, i) = b \neq 1$ , \begin{cases} \begin{aligned} x = b\cdot k_1
\\ i = b \cdot k_2 \end{aligned} \end{cases}$k_1,k_2$ 均为整数。
所以 $x+i = (k_1+k_2)\cdot b$ ,故 $gcd(x+i, i) = b \neq 1$ ,原命题成立。
故该题的答案
\begin{aligned} ans &= \varphi(M!) \cdot \frac{N!}{M!} \\ &= M! \cdot \prod_{p\mid M!,p~is~a~prime} \left( 1-\frac{1}{p} \right)\cdot \frac{N!}{M!} \\ &= N! \cdot \prod_{p\mid M!,p~is~a~prime} \frac{p-1}{p} \end{aligned}
因为 $M!$ 素因数是连续的一段,所以我们只要统计 $[1, M!]$ 中的所有素数积的逆元,以及所有素数 $-1$ 的乘积即可。
ps:其实这道题是有 $bug$ 的,我们注意到用线性求逆元时求的数是不能大于等于模数的,而题面中并没有强调模数 $P$ 恒大于 $N$ 和 $M$ ,将错就做吧。
//It is made by Awson on 2018.1.12
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const int N = 1e7;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int t, n, m, p, inv[N+], pro[N+];
int prime[N+], isprime[N+], tot, A[N+], B[N+]; void pre() {
pro[] = inv[] = ; for (int i = ; i <= N; i++) pro[i] = (LL)i*pro[i-]%p, inv[i] = -(LL)p/i*inv[p%i]%p;
for (int i = ; i <= N; i++) {
if (!isprime[i]) prime[++tot] = i;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ; if (!(i%prime[j])) break;
}
}
A[] = B[] = , A[prime[]] = (prime[]-)%p, B[prime[]] = inv[prime[]]%p;
for (int i = ; i <= tot; i++) A[prime[i]] = (LL)A[prime[i-]]*(prime[i]-)%p, B[prime[i]] = (LL)B[prime[i-]]*inv[prime[i]]%p;
for (int i = ; i <= N; i++) {if (!A[i]) A[i] = A[i-]; if (!B[i]) B[i] = B[i-]; }
}
void work() {
read(t), read(p);
pre(); while (t--) {
read(n), read(m); write(((LL)pro[n]*A[m]%p*B[m]%p+p)%p); putchar('\n');
}
}
int main() {
work();
return ;
}
[SDOI 2008]沙拉公主的困惑的更多相关文章
- [BZOJ 2186] [SDOI 2008] 沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为 \(1\) 到 \(N\) 的阶乘,但是,政府只发行编号与 \(M!\) 互质的钞票.房地产第 ...
- BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【BZOJ2186】沙拉公主的困惑(数论)
[BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
随机推荐
- 【Spring系列】自己手写一个 SpringMVC 框架
参考文章 一.了解SpringMVC运行流程及九大组件 1.SpringMVC的运行流程 1)用户发送请求至前端控制器DispatcherServlet 2)DispatcherServlet收到请求 ...
- Eclipse+Pydev环境搭建
1,准备好Eclipse和JAVA,x64 2,安装JDK,配置JAVA环境变量,假设安装路径为 C:\Program Files\Java\jdk1.8.0_161 在系统变量中,新建CLASSPA ...
- 网络1711c语言函数作业总结
作业地址:https://edu.cnblogs.com/campus/jmu/JMUC--NE17111712/homework/1335 总结 1.评分细则 评分注意事项 代码规范问题依旧要重视, ...
- Beta版本展示
Beta版本展示 开发团队:MyGod 团队成员:程环宇 张芷祎 王田路 张宇光 王婷婷 源码地址:https://github.com/WHUSE2017/MyGod MyGod团队项目的目标: 让 ...
- 浅谈CPU三级缓存和缓存命中率
CPU: CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多.缓存的出现主要是 为了解决CPU运算速度与内存读写速度不匹配的矛盾 ...
- Json转model对象,model转json,解析json字符串
GitHub链接: https://github.com/mozhenhau/D3Json D3Json 通过swift的反射特性,把json数据转换为model对象,本类最主要是解决了其他一般jso ...
- 策略模式(Stratety)
namespace StrategyPattern //策略模式 { /// <summary> /// 定义所以支持的算法的公共接口 /// </summary> abstr ...
- 剑指offer-数据流中的中位数
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. ...
- 有货前端 Web-APM 实践
有货前端 Web-APM 实践 0 背景 有货电商技术架构上采用的是前后端分离,前端是主要以业务展示和接口聚合为主,拥有自己的 BFF (Backend For Frontend),以 nodejs ...
- node防xss攻击插件
var xss = require('node-xss').clean; router.post("/orders/insert-orders", function (req, r ...