题目描述

2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地。起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状结构。如果基地A到基地B至少要经过d条道路的话,我们称基地A到基地B的距离为d。

由于火星上非常干燥,经常引发火灾,人类决定在火星上修建若干个消防局。消防局只能修建在基地里,每个消防局有能力扑灭与它距离不超过2的基地的火灾。

你的任务是计算至少要修建多少个消防局才能够确保火星上所有的基地在发生火灾时,消防队有能力及时扑灭火灾。

输入输出格式

输入格式:

输入文件名为input.txt。

输入文件的第一行为n (n<=1000),表示火星上基地的数目。接下来的n-1行每行有一个正整数,其中文件第i行的正整数为a[i],表示从编号为i的基地到编号为a[i]的基地之间有一条道路,为了更加简洁的描述树状结构的基地群,有a[i]<i。

输出格式:

输出文件名为output.txt

输出文件仅有一个正整数,表示至少要设立多少个消防局才有能力及时扑灭任何基地发生的火灾。

输入输出样例

输入样例#1:

6
1
2
3
4
5
输出样例#1:

2

类比距离为1的题,这题应该是树形dp,但是状态可能会多一些

1、状态的设计:

f[i][0]: 表示选了自己

f[i][1]: 表示选了儿子

f[i][2]: 表示选了孙子

——上面用来表示这个点被覆盖了的状态,下面为这个点没有被覆盖的状态

f[i][3]: 表示自己不一定被覆盖,但是儿子一定全部被覆盖

f[i][4]: 表示自己和儿子都不一定被覆盖,但是孙子一定全部都被覆盖

2、状态的更新

f[i][0] = 1+Σmin(f[j][0...4]);
f[i][1] = min( f[k][0] + Σ(j != k)min(f[j][0...3]) );
f[i][2] = min( f[k][1] + Σ(j != k)min(f[j][0...2]) );
f[i][3] = Σf[j][0...2];
f[i][4] = Σf[j][0...3];

3、状态的简化 上面的状态貌似已经可以搞了,但是我们发现上面有很多...,可以合并

令f[i][j] = min(f[i][0...j]) (j >= 2)

f[i][0] = 1+Σf[j][4];

f[i][1] = min( f[k][0] + Σ(j != k)f[j][3] )

= Σf[j][3] + min(f[k][0]-f[k][3])

      = f[i][4] + min(f[k][0]-f[k][3]);

f[i][2] = min( f[k][1] + Σ(j != k)f[j][2] )

= Σf[j][2] + min(f[k][1]-f[k][2])

      = f[i][3] + min(f[k][1]-f[k][2]);

f[i][3] = Σf[j][2];

f[i][4] = Σf[j][3];

最后再更新一遍,使得f[i][j] = min(f[i][0...j]) (j >= 2)

f[1][2]即为答案,O(n+m)的复杂度(貌似n为1000,邻接矩阵n^2也可通过)

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct Node
{
int next,to;
}edge[];
int head[],num,f[][],n;
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void dfs(int x,int pa)
{int i;
f[x][]=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v!=pa)
{
dfs(v,x);
f[x][]+=f[v][];
f[x][]+=f[v][];
f[x][]+=f[v][];
}
}
int x2=2e9,x1=2e9;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
x2=min(x2,f[v][]-f[v][]);
x1=min(x1,f[v][]-f[v][]);
}
f[x][]=x2+f[x][];
f[x][]=x1+f[x][];
f[x][]=min(f[x][],min(f[x][],f[x][]));
f[x][]=min(f[x][],f[x][]);
f[x][]=min(f[x][],f[x][]);
}
int main()
{int i,j,x;
cin>>n;
for (i=;i<=n;i++)
{
scanf("%d",&x);
add(x,i);
}
dfs(,);
cout<<min(f[][],min(f[][],f[][]));
}

[HNOI2003]消防局的设立的更多相关文章

  1. BZOJ 1217: [HNOI2003]消防局的设立( 贪心 )

    一个简单的贪心, 我们只要考虑2个消防局设立的距离为5时是最好的, 因为利用最充分. 就dfs一遍, 再对根处理一下就可以了. 这道题应该是SGU某道题的简化版...这道题距离只有2, 树型dp应该也 ...

  2. P2279 [HNOI2003]消防局的设立

    P2279 [HNOI2003]消防局的设立考场上想出了贪心策略,但是处理细节时有点问题,gg了.从(当前深度最大的节点)叶子节点往上跳k个,在这里设消防局,并从消防局遍历k个距离,标记上. #inc ...

  3. 【BZOJ1217】[HNOI2003]消防局的设立 树形DP

    [BZOJ1217][HNOI2003]消防局的设立 Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地, ...

  4. [HNOI2003]消防局的设立 (贪心)

    [HNOI2003]消防局的设立 题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达, ...

  5. BZOJ1217: [HNOI2003]消防局的设立

    BZOJ1217: [HNOI2003]消防局的设立 Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地. 起初为了节约材料,人类只修建了n-1条道路来连接这些基地 ...

  6. [luogu]P2279 [HNOI2003]消防局的设立[贪心]

    [luogu]P2279 [HNOI2003]消防局的设立 题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两 ...

  7. 【洛谷P2279】[HNOI2003]消防局的设立

    消防局的设立 题目链接 贪心:每次取出深度最大的节点,若没有被覆盖到,要想覆盖它, 最优的做法显然是将它的爷爷设为消防局 (因为该节点深度为最大,选兄弟.父亲所覆盖的节点,选了爷爷后都能够覆盖) 用优 ...

  8. bzoj 1217 [HNOI2003]消防局的设立 Label:图论

    题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状 ...

  9. 洛谷P2279 [HNOI2003]消防局的设立

    题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状 ...

随机推荐

  1. Beta 第一天

    一.今日任务 重新熟悉整体项目 对整个项目在未来的beta冲刺中进程有一个合理的规划 由于我们送出的是一个负责前端的成员,引入的也是一个负责前端工作的女生,(女生做起美工比起男生更加得心应手吧)所以我 ...

  2. Jmeter读取文件中的值《一》

    此篇主要是对应上一章节的呼应,上一篇中讲到将返回值写入文件,这个值如果在下一个接口中用到, 那么我们需要去从文件中读取数据,这是我们该如何操作? 一.测试计划中添加CSV Data Set Confi ...

  3. 再议Python协程——从yield到asyncio

    协程,英文名Coroutine.前面介绍Python的多线程,以及用多线程实现并发(参见这篇文章[浅析Python多线程]),今天介绍的协程也是常用的并发手段.本篇主要内容包含:协程的基本概念.协程库 ...

  4. Centos7安装openvpn及客户端配置

    1.openvpn介绍 VPN直译就是虚拟专用通道,是提供给企业之间或者个人与公司之间安全数据传输的隧道,使用OpenSSL加密库中的SSLv3/TLSv1协议函数库. 目前OpenVPN能在Sola ...

  5. Leetcode:Two Sum

    原题:https://leetcode.com/problems/two-sum/ 尝试了两种方法: 方法一: var twoSum = function(nums, target) { for(va ...

  6. MQTT和paho(二)socket

    参考链接:http://blog.csdn.net/yangzl2008/article/details/8861069

  7. linux下的Shell编程(5)循环

    Shell Script中的循环有下面几种格式: while [ cond1 ] && { || } [ cond2 ] -; do - done for var in -; do - ...

  8. 阿里云API网关(2)开放 API 并接入 API 网关

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  9. apigw鉴权分析(1-2)腾讯开放平台 - 鉴权分析

    一.访问入口 http://wiki.open.qq.com/wiki/%E8%85%BE%E8%AE%AF%E5%BC%80%E6%94%BE%E5%B9%B3%E5%8F%B0%E7%AC%AC% ...

  10. kafka之zookeeper 节点

    1.zookeeper 节点 kafka 在 zookeeper 中的存储结构如下图所示: