51nod 1040 最大公约数之和(欧拉函数)
1个数N(N <= 10^9)
公约数之和
6
15
/*
51nod 1040 最大公约数之和(欧拉函数) 给你n,然后求[1-n]所有数与n的最大公约数的和
n的最大公约数必定是n的因子v,所以考虑枚举因子分别求他们的个数num,那么因子v对答案的贡献就是v*num
相当于求[1-n]中 GCD(a[i],n) = v的个数,也就成了GCD(a[i]/v,n/v)=1的个数。 欧拉函数求出即可。 欧拉函数:[1-n]中 gcd[i,n]=x的个数 hhh-2016/05/27 11:09:03
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional> using namespace std;
const int maxn = 1040;
typedef long long ll;
ll eular(ll n)
{
ll ans=1;
for(ll i=2; i*i<=n; i++)
{
if(n%i==0)
{
n/=i;
ans*=i-1;
while(n%i==0)
{
n/=i;
ans*=i;
}
}
}
if(n>1)
ans*=n-1;
return ans;
} int main()
{
ll x;
scanf("%I64d",&x);
ll ans = 0;
for(ll i = 1 ; i*i <= x; i++)
{
if(x % i != 0)
continue;
ll t = x/i;
ans += i*eular(t);
//cout << i << ": " << eular(t) << endl;
if(i != t)
{
ans += (t)*eular(x/t);
//cout << t << ": " << eular(x/t) << endl;
}
}
printf("%I64d\n",ans);
}
51nod 1040 最大公约数之和(欧拉函数)的更多相关文章
- 51nod 1040 最大公约数之和 欧拉函数
1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...
- 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举
1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...
- 51nod 1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= ...
- 51nod 1363 最小公倍数之和 ——欧拉函数
给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...
- 51nod 1040:最大公约数之和(数论)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 给出一个n,求1-n这n个数,同n的最大公约数的和. ...
- 51nod 1040 最大公约数之和 | 数论
给出一个n,求1-n这n个数,同n的最大公约数的和 n<=1e9 考虑枚举每个因数,对答案贡献的就是个数*大小
- 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】
以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51nod 1040 最大公约数的和 欧拉函数
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
随机推荐
- 从0开始的LeetCode生活—001-Two Sum
题目: Given an array of integers, return indices of the two numbers such that they add up to a specifi ...
- JAVA中GridBagLayout布局管理器应用详解
很多情况下,我们已经不需要通过编写代码来实现一个应用程序的图形界面,而是通过强大的IDE工具通过拖拽辅以简单的事件处理代码即可很轻松的完成.但是我们不得不面对这样操作存在的一些问题,有时候我们希望能够 ...
- Python科学计算(一)
作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文件 http://git ...
- scrapy csvfeed spider
class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...
- ZendStudio的使用技巧
为了使得ZendStudio支持volt模版可以在首选项中的ContentType加上.volt就行 在ZendStudio中的->help中有一个installNewssoftWare,然后会 ...
- Python内置函数(31)——object
英文文档: class objectReturn a new featureless object. object is a base for all classes. It has the meth ...
- C语言学习(一)
C语言易学难精,如果在平时的编程中,加入一些小技巧,可以提供程序运行的效率,何乐而不为呢? 本小白初学C语言准备记录自己的学C之路,经常贴一些自己觉得优化的小程序代码,希望大神们不吝 赐教. 宏定义下 ...
- JsonCPP库使用
1.使用环境DevC++ a.建立C++工程,并添加.\JsonCPP\jsoncpp-master\jsoncpp-master\src\lib_json中源文件到工程中. b.添加头文件路径 2. ...
- CSS中容易混淆的伪元素类型和用法
:first-of-type 匹配属于其父元素的第一个特定类型的子元素. 1.例子 <head> <meta charset="UTF-8"> <ti ...
- C# 客户端程序调用外部程序的三种实现
简介 我们用C#来开发客户端程序的时候,总会不可避免的需要调用外部程序或者访问网站,本篇博客介绍了三种调用外部应用的方法,供参考 实现 第一种是利用shell32.dll,实现ShellExecute ...