【UOJ UNR #1】争夺圣杯
来自FallDream的博客,未经允许,请勿转载,谢谢。
考虑直接对每个数字,统计它会产生的贡献。
单调栈求出每个数字左边第一个大等于他的数,右边第一个大于他的 (注意只能有一边取等)
假设左右两边分别有x1,x2个数,较大的是mx,较小的是mn
对于长度在(mx+1,mn+mx+1]的x,会产生mn+mx+1 - x - 1的贡献
对于长度在(mn,mx+1]的数,会产生 mn+1的贡献
对于长度在[1,mn]中的数x,会产生x的贡献。
差分维护即可
#include<iostream>
#include<cstdio>
#define MN 1000000
#define mod 998244353
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,a[MN+],s[MN+],g[MN+],top=,q[MN+],Lt[MN+],Rt[MN+],ans=;
inline void R(int&x,int y){x+=y;x>=mod?x-=mod:;}
int main()
{
n=read();
for(int i=;i<=n;++i) a[i]=read();
for(int i=;i<=n;++i)
{
while(top&&a[i]>=a[q[top]]) --top;
Lt[i]=q[top]+;q[++top]=i;
}
q[top=]=n+;
for(int i=n;i;--i)
{
while(top&&a[i]>a[q[top]]) --top;
Rt[i]=q[top]-;q[++top]=i;
}
for(int i=;i<=n;++i)
{
int mn=min(i-Lt[i],Rt[i]-i),y=mod-(a[i]%mod),mx=max(i-Lt[i],Rt[i]-i),z=a[i]%mod;
if(mn>) R(s[],z),R(s[mn+],y);
R(g[mn+],1LL*(mn+)*z%mod),R(g[mx+],1LL*(mod-mn-)*z%mod);
R(g[mx+],1LL*(mn+mx+)*z%mod);R(s[mx+],y);
R(g[mn+mx+],1LL*(mod-mn-mx-)*a[i]%mod);R(s[mn+mx+],z);
}
for(int i=;i<=n;++i)
{
R(g[i],g[i-]);R(s[i],s[i-]);
ans^=(1LL*s[i]*i+g[i])%mod;
}
printf("%d\n",ans);
return ;
}
【UOJ UNR #1】争夺圣杯的更多相关文章
- 【uoj#213】[UNR #1]争夺圣杯 单调栈+差分
题目描述 给出一个长度为 $n$ 的序列,对于 $1\sim n$ 的每一个数 $i$ ,求这个序列所有长度为 $i$ 的子区间的最大值之和,输出每一个 $i$ 的答案模 $998244353$ 后异 ...
- [UOJ213][UNR #1]争夺圣杯
uoj description 一个长为\(n\)的序列,给定一个参数\(m\),求所有长度为\(m\)的区间的最大值之和. 对于所有的\(m\in[1,n]\)你都需要分别求出答案然后异或起来. \ ...
- uoj#213. 【UNR #1】争夺圣杯
http://uoj.ac/problem/209 单调栈求出每个位置x左边第一个大于它的位置L[x]和右第一个不小于它的位置R[x],于是矩形L[x]<=l<=x<=r<=R ...
- UOJ#213——【UNR #1】争夺圣杯
1.题意:给一个序列,枚举长度x,然后在这个序列中所有长度为x的区间,我们求出这些区间的最大值之和并取模,最后将所有的异或起来就好啦 2.分析:听说好多人写的 ,特来写一发 的算法骗访问量 话说这个东 ...
- uoj#213. 【UNR #1】争夺圣杯(单调栈)
传送门 我们枚举每一个元素,用单调栈做两遍计算出它左边第一个大于它的位置\(l[i]\)和右边第一个大于它的位置\(r[i]\),那么一个区间以它为最大值就意味着这个区间的左端点在\([l[i]+1, ...
- A. 【UNR #1】争夺圣杯
题解: 一道比较水的题目 按照最一般的思路离散化后枚举最大值 然后考虑最大值的贡献 会发现需要分类讨论一下 发现对一段k的影响是等差数列 所以可以用线段树维护差分数组
- uoj213 【UNR #1】争夺圣杯
题目 设\(f_i\)表示所有长度为\(i\)的区间的最大值的和,求\(\bigoplus \sum_{i=1}^nf_i\) 不难发现随机数据非常好做 由于一个随机序列的前缀最大值期望只会变化\(\ ...
- [UOJ UNR#1]奇怪的线段树
来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...
- [UOJ UNR #2]积劳成疾
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 区间最大值的题emmmm 想到构建笛卡尔树,这样自然就想到了一种dp f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案. 转移 ...
随机推荐
- Scrum 冲刺 第三日
Scrum 冲刺 第三日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...
- WPS怎么让前几页的页眉或者页脚与后面的不同
其实不管利用WPS还是office对文档还是PPT进行操作,其实核心思想还是一种编程,主要是前端的编程,就是通过改变一些这些软件设置的样式,然后通过改变这些样式,使这些文字以老师要求的格式显示出来的, ...
- python的命名空间
Python的命名空间是Python程序猿必须了解的内容,对Python命名空间的学习,将使我们在本质上掌握一些Python中的琐碎的规则. 接下来我将分四部分揭示Python命名空间的本质:一.命名 ...
- LDAP的用户需求
使用LDAP(ApacheDS)构建统一认证服务(SSO单点登录) 构建团队协作的体系,需要涉及很多个系统,如SVN.Jenkins.Trac.Nexus等,而一般而言每个系统均有其用户体系,当我 ...
- Vue全家桶
简介 “简单却不失优雅,小巧而不乏大匠”. Vue.js 是一个JavaScriptMVVM库,是一套构建用户界面的渐进式框架.它是以数据驱动和组件化的思想构建的,采用自底向上增量开发的设计. 为什么 ...
- python 类和对象
类和对象 类 1.类的组成 数据和函数,二者是类的属性 2.两个作用: 实例化 属性引用 属性引用:类名.属性(增删改查) 实例化: 类名加括号就是实例化,会自动出发__init__的运行 ...
- hdu-3348 coins---贪心
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3348 题目大意: 给你一个价格,还有面值分别为1,5,10,50,100(单位:毛)纸币的数量,要你 ...
- python判断素数的方法
#运用python的数学函数 import math def isPrime(n): if n <= 1: return False for i in range(2, int(math.sqr ...
- issubclass判断前面是不是后面的子类
issubclass(sub,sup) 判断前面是不是后面的子类
- 通过TCP实现显示屏截图请求及回传
在很多业务场景下,需要监视显示屏画面.在实时性要求不高的情况下,可以通过定时对显示屏进行截图及回传实现. 本文通过C#中提供的TCP通信功能,对该功能的实现进行简单描述. 首先,该功能的实现分为客户端 ...